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Algorithm for the retrieval of soil moisture from the radar backscattering coefficient
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An algorithm based on a fit to the small perturbation method (SPM) was developed so that soil moisture can be derived
directly from radar backscattering coefficient data. Using the genetic algorithm with a simulated data set generated from
the original SPM model, this algorithm is developed to derive the dielectric constant and then the soil moisture of bare
soil surfaces. The fitting algorithm is tested against the original SPM model for incidence angles between 10◦ and 60◦,
soil dielectric constants between 3 and 41, and the surface root mean square height between 1 and 20 mm. The fitting
algorithm has the same frequency range as the original SPM model. The fitting algorithm computes the backscattering
coefficients with an average error of 0.05 dB for horizontal horizontal (HH)-polarisation and 0.15 dB for vertical vertical
(VV)-polarisation, where the backscattering observations are taken from the literature. Comparison of the soil moisture
derived from the radar backscattering coefficient using the inversion algorithm with the simultaneous measurement shows
that the soil moisture retrieved from the inversion algorithm agrees very well for VV-copolarisation (R = 0.89, in contrast
with R = 1 for perfect agreement) and agreement between the calculation and measurement is significant only at the 90%
significance level for HH-copolarisation.

Keywords: algorithm; soil moisture; retrieval; radar; backscattering coefficient; microwave remote sensing

1. Introduction
The soil moisture content is one of the important param-
eters in a number of disciplines, including hydrology,
agriculture, and environmental sciences. Operational
large-scale soil moisture products would likely enhance
the accuracy of numerical weather prediction, hydrologi-
cal flood forecasting, agricultural irrigation management
and drought monitoring, as well as water cycle research
related to climate studies. The significance of soil mois-
ture content is its role in the partition of energy at the
ground surface into sensible and latent heat exchange
with the atmosphere, and the partition of precipitation
into infiltration and runoff. Therefore, various methods of
assessing and monitoring soil moisture have been devel-
oped, and retrieval of this parameter from ground-base
or space-borne radar measurements has been actively
investigated.[1–19] The retrieval of soil moisture has
been implemented over bare soils from synthetic aper-
ture radar (SAR) data in the literature.[8,9,20,21] The
multi-incidence SAR data have been used to improve the
estimation of soil moisture.[8,13,14,20] The sensitivity of
advanced SAR data to soil surface parameters (surface
roughness and soil moisture) has been investigated over
bare fields at various polarisations (horizontal horizontal
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(HH), horizontal vertical (HV), and vertical vertical (VV))
and incidence angles in Holah et al.[5]

Analytical models based on physical approximation
such as the physical optics, the geometrical optics, the first-
order small perturbation method (SPM),[22] and integral
equation method (IEM) [4] offer approaches to simulate
the backscattering coefficient. Moreover, various param-
eters, such as surface root mean square (RMS) height,
correlation length, incidence angle, and dielectric con-
stant of soil, are model input parameters. Soil is a mixture
of various minerals, organic materials, liquid water, and
air pores. However, its mixing dielectric constant is not
simply a linear mixing of the dielectric constants of all
constitutive components but rather a nonlinear mixing.
The complexity of these methods and nonlinearity in the
mixing of constitutive dielectric constants make it very dif-
ficult to derive soil moisture using these models directly
from the SAR backscattering data measured from natu-
ral surfaces. Many empirical and semi-empirical models
have been developed to establish the relationships between
backscattering coefficient with soil moisture and surface
roughness,[23–25] and the empirical models derived from
in situ data sets can fit their data well. These empirical
models may be very suitable under similar soil surface
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conditions and SAR system parameters as those on which
the empirical models were developed.

The first-order SPM [22] is valid for surfaces with
small roughness parameters. This means that both the sur-
face standard deviation and its correlation length should
be small compared with the incident wavelength.[26] In
addition, the average slope of the surface should be of
the same order of magnitude as the wave number times
the surface RMS height. Mathematically, the above two
conditions are [22]

ks < 0.3, (1)
√

2s
l

< 0.3, (2)

where k is the wave number, s is the surface RMS height,
and l is the surface correlation length. The SPM model has
been applied to the bare soils, snow, and sea ice.[21,27–
33] In addition, the IEM model can be applied over a wider
range of soil surface roughness conditions than the SPM
model. However, it is still an open question if the IEM
model can perform equally well as or even better than the
SPM model for cases such as monitoring sporadic rainfalls
in desert, measurement of soil moisture in flat bare soils,
and liquid water content in snow. Compared with the IEM
model, the analytical formulation of the SPM model is
simpler and fewer computer resources may be required if
it is applicable for retrieval of soil moisture or liquid water
content in snow. On the other hand, as the soil or snow
dielectric constant is implicitly imbedded in the original
SPM, inversion of soil moisture or liquid water content
in snow is often accomplished through iterations till con-
vergence is reached. This is computationally expensive
and can cause accumulated round-off errors in the final
retrieved soil moisture, especially when it is applied to
retrieve soil moisture or snow liquid water content from
active microwave remote sensing data on a large scale.
Parameterisation of SPM is useful in order to obtain a
manageable inversion algorithm that can handle a large
volume of SAR backscattering data.

The objective of this paper is to develop and test
an inversion algorithm for direct soil moisture retrieval
from radar backscattering coefficient through param-
eterisation of the SPM model for a wide range of
soil dielectric constant, incidence angle, RMS height,
and surface correlation length, which also include the
effect of surface power spectrum. In the following sec-
tions, the fitting algorithm will be developed using
the generic algorithm (GA) through parameterisation of
the SPM model and the fidelity to the original SPM
model is assessed. Then the algorithm is tested with in
situ measurement of radar backscattering coefficients.[4]
Lastly, the inversion algorithm is derived from the fit-
ting algorithm and then used to derive soil moisture and
tested with in situ soil moisture and radar backscattering

coefficient measurement collected simultaneously [2,8]
and the difference between derived and measured soil
moisture is assessed. Compared with the previous inver-
sion algorithm, the inversion algorithm presented in this
paper is simple. The retrieval of soil moisture is direct and
can be a useful tool for retrieving soil moisture of bare soil
surfaces from both ground-based and space-borne radar
backscattering coefficient data.

2. Development of an statistic algorithm based on a
GA approach

The backscattering coefficients of bare soil surfaces
depend on its dielectric constant, surface roughness, inci-
dence angle, and frequency. The dielectric constant of
soil is the parameter sensitive to volumetric soil moisture
due to the large difference in dielectric constant between
dry soil (typical dielectric constants of 2–3) and water
(dielectric constant of approximately 80), and the surface
roughness is generally described by an autocorrelation
function depending on the surface RMS and the corre-
lation length. The radar backscattering coefficients from
the SPM model are given by [22]

σpp = 8k4s2|αpp cos2 θ |2W (2k sin θ , 0), (3)

where p = h (horizontal) or v (vertical) polarisation and

αhh = (cos θ −
√

εr − sin2 θ)

(cos θ +
√

εr − sin2 θ)
, (4)

αvv = (εr − 1)[sin2 θ − εr(1 + sin2 θ)]
[εr cos θ + (εr − sin2 θ)1/2]2

. (5)

In the above equations, k = 2π f /c is the wave number,
f the operating frequency, c the light velocity in the free
space, s is the RMS height, θ is the incidence angle, εr is
the soil relative dielectric constant, and W(2k sin θ ,0) is the
Fourier transform of a known surface correlation function
which can be calculated by

W (2k sin θ , 0) = 1
2π

∫ ∞

−∞

∫ ∞

−∞
ρ(x, y)

× exp(−j2kx sin θ) dx dy, (6)

where ρ(x,y) is the surface correlation function, taking
either the exponential form or Gaussian form.

From the above equations, it is shown that the soil
dielectric constant εr only appears in αpp, which is a non-
linear function of εr and θ . To retrieve the soil moisture,
εr has to be inverted from αpp, which is usually impos-
sible analytically. Based on this observation, αpp can be
fit by using the basic mathematical functions so that εr
can be derived, directly from the equations of backscat-
tering coefficients, and soil moisture can be subsequently
retrieved.
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126 K. Song et al.

To fit αpp by using the basic mathematical functions
of εr and θ , the variation trend of αpp with respect to
variables εr and θ must be obtained first. By setting the
value of incidence angle θ to specific values, αpp has been
computed with εr values changed. The basic mathematical
functions to fit Equations (4) and (5) are chosen by observ-
ing the mathematical function scheme of Equations (4)
and (5), the variation trend of the simulated curves from
original SPM model, and the fitting error between the
inversion algorithm and the original SPM model. In addi-
tion, the simple mathematical functions have been used
to realise minimum fitting error by using an optimisation
method. After the type of the basic mathematical functions
for fitting Equations (4) and (5) are chosen, the coefficients
of the basic mathematical functions are optimised by using
the GA to get a minimum error between the original SPM
model and the optimised fitting algorithm. According to
the simulated results, it was found that a power function
of εr as a basic function for fitting is optimal for the hori-
zontally and vertically polarised backscattering. Similarly,
the cosine functions of θ are optimal for the horizontally
polarised backscattering, while a polynomial function of
θ for the vertically polarised backscattering.

After optimising the basic mathematical functions as
the building blocks, the fitting is then performed using
GA. The ranges of soil dielectric constant εr , incidence
angle θ , RMS height s, the correlation length L, and their
incremental steps are listed in Table 1. These ranges are
used for computation of σhh and σvv. The GA is a global
numerical optimisation method which is patterned after
the natural processes of genetic recombination and evolu-
tion. Moreover, the GA is simple to programme and does
not get stuck in the local minima, so it has advantages over
other traditional optimisation techniques.[34–36] GA can
also be used as an inversion technique in retrieving
soil moisture.[37,38] The algorithm begins with a binary
encoding of the input parameters, i.e. the coefficients of
basic mathematical functions selected. The random binary
bits for the initial chromosomes are generated using the
sequential random numbers. Then an optimum chromo-
some is obtained from the initial chromosomes by an
iterative computation, and these chromosomes undergo
an iterative natural selection using a cost function to get
an optimal solution. The cost function is the absolute
errors of backscattering coefficients between the original

Table 1. Model parameters.

Model parameters Minimum Maximum Interval Unit

Dielectric constant 3 41 2
Incidence angle 10 60 1 degree
RMS height 1 20 1 mm
Correlation length 10 100 10 mm
Correlation

functions
Gaussian, Exponential

SPM model and the optimised fitting algorithm, which is
given as

cpp =
∑
θ ,εr

|σpp(θ , εr) − σ F
pp(θ , εr)|, (7)

where σpp and σ F
pp are the backscattering coefficients calcu-

lated by the original SPM model and the fitting algorithm,
respectively. Summation

∑
θ ,εr

is over all data points of
(θ , εr). cpp is the horizontally (p = h) or vertically (p = v)
co-polarised cost function. Our purpose is to find the exact
form of σ F

pp by minimising cpp through numerical fitting.
To ensure the fidelity of the statistic algorithm to the
original SPM model, more than 1000 samples (data points)
were generated with the original SPM model followed by
multivariate linear regression analysis to obtain the statis-
tic soil moisture algorithm. The exact forms of the fitting
functions of the horizontally and vertically co-polarised
backscatter coefficients that minimise the cost function
are given as in Equations (8) and (9), where θ is in radian
and other parameters in SI units.

σ F
hh = 17k4s2

[
cos 0.6θ

4.056
e1.51/ε0.2

r − 1
]2

× W (2k sin θ , 0) cos4 θ , (8)

σ F
vv = 8k4s2

[
6.7 sin2.8 θ − 9.2 sin1.2 θ + 3.68 sin 2θ

+ 0.396(εr − 2.7)0.3

(1.585 − θ)2

]2

× W (2k sin θ , 0) cos4 θ . (9)

3. Comparison of the fitting algorithm and original
SPM model

Before application of the fitting algorithm to retrieve
soil moisture, the fidelity of the fitting algorithm to the
original SPM model needs to be assessed. Figure 1(a)
and 1(b) shows the histograms of the absolute errors in
dB between the original SPM model and the SPM fit-
ting algorithm σhh (Equation (8)) and σvv (Equation (9)),
respectively, using soil model parameter values listed in
Table 1. Comparing the original SPM model (Equations
(3)–(5)) with the SPM fitting algorithm σhh (Equation (8))
and σvv (Equation (9)), it can be seen that they all include
“k4W (2k sin θ , 0)” and the operating frequency is only
included in “k4W (2k sin θ , 0)”. So, the fitting algorithm
has the same frequency range as the original SPM model.
That is to say, any frequency can be chosen to assess
the fidelity of the fitting algorithm to the original SPM,
and the difference (absolute error) between the fitting
algorithm and the original SPM model is independent of
the operating frequency.

Comparison was performed separately for HH
(Figure 1(a)) and VV (Figure 1(b)) co-polarisation cases.
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Figure 1. Histogram of absolute error in dB between the SPM
model and the SPM fitting algorithm for (a) σhh; and (b) σvv.
The total number of samples is 408,000.

For each case, a specific set of values for the model param-
eters given in Table 1 is a sample for either Gaussian or
exponential correlation functions. Based on the minimum,
maximum, and interval for each model parameter and
two correlation functions, there are totally 4.08 × 105

samples for the calculation of the radar backscattering
coefficient. For each sample, calculation was performed
for the radar backscattering coefficient using both the
fitting algorithm and the original SPM model and the dif-
ference between them (absolute error) is tracked down.
For the HH case, since the maximum difference (error) is
0.53 dB, the absolute errors from −0.8 to 0.6 were subdi-
vided into 14 bins, each covering a range of 0.2 dB. The
absolute error for each sample falls into one of these bins.
The number of samples fallen in each bin was tracked
down and shown in Figure 1(a). Similar process was per-
formed for the VV-polarisation case and was shown in
Figure 1(b). From Figure 1(a), it is shown that the major-
ity of the sample calculations fall within the two error
bins close to 0. This means that for most of the samples,
the absolute error is within 0.2 dB. Similar results are for

the VV-polarisation case. A comparison between the fit-
ting algorithm developed and the original SPM model
shows that the fitting algorithm computes the backscat-
tering coefficients with an average error of 0.05 dB for
HH-polarisation and 0.15 dB for VV-polarisation. The
maximum absolute error between the original SPM model
and the fitting algorithm (Equation (8)) is 0.53 dB for
the HH-polarisation, while that between the SPM model
and the fitting algorithm (Equation (9)) is 1.23 dB for
the VV-polarisation. For σ F

vv, the largest error of 1.23 dB
occurs when θ = 11◦ and εr = 3. These comparisons
indicate that the backscattering coefficients calculated by
the optimal fitting algorithm agree with those from the
original SPM model with errors being within an error
envelop of 0.53 dB for HH-polarisation and of 1.23 dB
for VV-polarisation.

4. Algorithm assessment through comparison with
in situ measurement

4.1. Backscattering coefficient comparison
Comparison with in situ measurement is the best way for
algorithm assessment. However, simultaneous in situ mea-
surements of both radar backscattering coefficients and
soil surface conditions are scare due to the sophistication
of a radar system and difficulty in soil surface characteri-
sation. The limited data sets available in the literature were
used for this task.

The set of data was from Fung et al.[4] A compari-
son between the calculated and measured values of the
backscattering coefficients from a bare soil surface over
the incident angle range from 10◦ to 70◦ under two soil
surface conditions at frequencies 1.515 and 4.725 GHz
is shown in Figures 2 and 3. In Figure 2, the RMS
height is 4 mm, the correlation length is 84 mm, and
the soil dielectric constant is about 8. In Figure 3, the
RMS height is 3.2 mm, the correlation length is 99 mm,
and the soil dielectric constant is about 16. It is noted
that the difference between the algorithm results and the
measured values were found to become larger when the
incidence angle increases, especially for HH-polarisation.
For VV-polarisation, the difference is smaller than 4 dB
for the range of θ (10◦–70◦), except for the frequency
1.515 GHz and θ = 10◦. The difference is more than 10 dB
at the frequency 1.515 GHz and θ = 10◦ for both VV-
and HH-polarisation, which is compatible with [4] and
may be caused by the measurement error or the orig-
inal SPM model. On the other hand, the difference is
more than 5 dB over the incidence angle of 50◦–70◦ for
HH-polarisation, which is also observed in Fung et al.[4]
Overall, the average absolute error of the backscattering
coefficients between the algorithm developed and mea-
surements is 3.3 dB over the incident angle ranging from
10◦ to 70◦.
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Figure 2. Comparisons of the algorithm predictions (lines) with
measurements (symbols) from a bare soil surface 14% surface
moisture content at (a) 1.515 GHz and (b) 4.725 GHz.

4.2. Inversion algorithm and soil moisture
comparison

To assess the appropriateness of the developed algorithm
to estimate soil moisture content, the soil dielectric
constant is inverted from the measured backscattering
coefficients firstly. According to Equations (8) and (9),
the inversion algorithm can be obtained as follows:

εrhh = 7.85

⎧⎪⎨
⎪⎩ ln

∣∣∣∣∣∣∣
4.056

cos 0.6θ

⎛
⎜⎝1 −

0.2425
√

σ F
hh

k2s cos2 θ
√

W (2k sin θ , 0)

⎞
⎟⎠

∣∣∣∣∣∣∣
⎫⎪⎬
⎪⎭

−5

,

(10)

εrvv = (1.585 − θ)6.67

0.0456

(√
σ F

vv/2W (2k sin θ , 0)

2k2s cos2 θ

+ 9.2 sin1.2 θ − 6.7 sin2.8 θ − 3.68 sin 2θ

)3.334

+ 2.7. (11)
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Figure 3. Comparisons of the model predictions (lines) with
measurements (symbols) from a bare soil surface 30% surface
moisture at (a) 1.515 GHz and (b) 4.725 GHz.

Equation (10) describes the soil dielectric constant
as an explicit function of backscattering coefficient,
incidence angle, and surface roughness parameters for
HH-polarisation, while Equation (11) describes the soil
dielectric constant for VV-polarisation.

The above inversion algorithm is applied to inferring
the moisture content from experimental radar backscat-
tering coefficient data obtained from literatures [2,8] over
soil surfaces with different roughness and wetness con-
ditions. The soil dielectric constant has been retrieved
from the measured backscattering coefficient using Equa-
tions (10) and (11). Then, the soil moisture content is
inferred from soil dielectric constant using a set of empir-
ical formulae.[39] According to these empirical formulae,
the soil moisture content is dependent on the soil dielec-
tric constant. For the data set from Bolten et al. [2] the
soil surface roughness parameters, the soil moisture, and
other parameters are given in Table 2. The gravimetric soil
moisture of the 0–5 cm depth is used exclusively (instead
of volumetric soil moisture) due to possible error in the in
situ measured bulk density, and the soil moisture content
were measured at low-vegetated fields. Table 3 shows the
surface roughness, moisture, and other parameters for the
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Table 2. Soil roughness, moisture, and other parameters
from Bolten et al.[2].

Soil Soil
s θ Freq moisture Vegetation density
(mm) (degree) (GHz) (%) (kg/m2) (g/cm3)

2 39 1.26 6.1 <0.25 1.28
2 39 1.26 8.0 <0.25 1.28
2 39 1.26 8.4 <0.25 1.28
2 39 1.26 9.0 <0.25 1.28
2 39 1.26 9.9 <0.25 1.28
2 39 1.26 11.2 <0.25 1.28
2 39 1.26 11.6 <0.25 1.28
2 39 1.26 13.8 <0.25 1.28
2 39 1.26 15.3 <0.25 1.28
2 39 1.26 17.0 <0.25 1.28
2 39 1.26 19.7 <0.25 1.28
2 39 1.26 20.6 <0.25 1.28
2 39 1.26 23.4 <0.25 1.28

Table 3. Soil roughness, moisture, and other parameters from
Sano et al.[8].

Soil Soil
s θ Freq. moisture Crop density
(mm) (degree) (GHz) (%) cover (g/cm3)

3 23 5.3 36 Wheat (<5%) 1.4
3 23 5.3 35 Wheat (<5%) 1.4
2 23 5.3 13 Wheat (<5%) 1.4
3 23 5.3 10 Wheat (<5%) 1.4
2 23 5.3 24 Wheat (<1%) 1.4
3 23 5.3 20 Wheat (<1%) 1.4
4 23 5.3 15 Wheat (<1%) 1.4
3 23 5.3 15 Wheat (<1%) 1.4
2 23 5.3 15 Wheat (<1%) 1.4
3 23 5.3 14 Wheat (<1%) 1.4
3 23 5.3 14 Wheat (<1%) 1.4
2 23 5.3 20 Wheat (<1%) 1.4
2 23 5.3 20 Wheat (<1%) 1.4
4 23 5.3 24 Wheat (<1%) 1.4
3 23 5.3 29 Wheat (<1%) 1.4
3 23 5.3 31 Wheat (<1%) 1.4
5 23 5.3 36 Wheat (<1%) 1.4
3 23 5.3 34 Wheat (<1%) 1.4
3 23 5.3 32 Wheat (<1%) 1.4
3 23 5.3 35 Wheat (<1%) 1.4

data set from Sano et al.[8] The correlation function for the
data set of Sano et al. [8] was chosen to be the exponential
function.

The correlations between the calculated and measured
values of soil moisture content for HH mode and VV-
mode from Bolten et al.,[2] VV-mode from Sano et al.[8]
are shown in Figure 4, where “Linear” means linear fit.
The dashed line is the linear regression line for the calcu-
lated soil moisture versus the measured by Bolten et al.
[2] (open triangles) for HH-polarisation. The dotted line
is the linear regression line for the calculated soil moisture
versus the measured by Bolten et al. [2] (filled squares) for

VV-polarisation. The dash-dot line is the linear regression
line for the calculated soil moisture versus the measured
by Sano et al. [8] (filled circles) for VV-polarisation.
The dashed double dot line is the linear regression line
for all the calculated soil moisture versus the measured
by both Bolten et al. [2] and Sano et al. [8] for VV-
polarisation (filled squares plus filled circles). The thick
solid line is the linear regression line for all the calculated
soil moisture versus the measured for both HH and VV-
polarisations (filled squares and filled circles plus open
triangles). The root-mean-square deviation (RMSD) and
correlation between the calculated and all VV-mode mea-
surements and overall measurements are also shown in
Figure 4. The number (n) of samples (measurements), cor-
relation coefficient R, significance of the correlation, and
RMSD are summarised in Table 4. Here, significance is
defined as S0 = (1 − p) × 100%, where p is the level of
probability for the rejection of the null hypothesis with cor-
relation coefficient R = 0. Perfect agreement between the
calculation and measurement is characterised by R = 1.
Values of S0 given in Table 4 are for one-tailed test. Analy-
ses were focused first on the impact of polarisation because
the model equations for VV and HH are different. Then
the impact of frequency was considered.

From the results shown in Figure 4 and Table 4, the
best agreement between the calculation and measurement
is found for all VV-copolarisation data from both [2,8]
data sets. For each individual VV-mode data set, the cor-
relation coefficient is 0.81 for [2] and 0.87 for [8], both are
statistically significant taking S0 = 95% as the threshold.
For the HH-mode data set, the correlation coefficient is
0.44, which is statistically significant taking S0 = 90% as
the threshold but not so taking S0 = 95% as the threshold.
Since the measurements in Bolten et al. [2] were car-
ried out at low soil moisture content region (6.1–23.4%)
and only limited HH-mode measurements (n = 13) were
obtained, the results for HH-mode is thus compromised
and not conclusive. For VV-mode, however, the mea-
surements in Sano et al. [8] were carried out over soil
moisture conditions between 10% and 36%, in combina-
tion with the soil moisture conditions in Bolten et al. [2]
between 6.2% and 23.4%, the soil moisture spectrum cov-
ers from 6.2% to 36%. The agreement between calculation
using the fitting algorithm (Equations (10)–(11)) and the
measurement is reasonably well with R = 0.89, in com-
parison with R = 1 for perfect agreement. It should be
noted that the low-vegetated fields include bare fields and
low-vegetated fields,[8] but it still gives a good response
when applied to the bare-surface algorithm. The RMSDs
of soil moisture are similar for these data sets, varying
from 5.67% to 7.18%. Figure 4 also shows the analyses
for different frequencies. Consider the VV mode for the
two different frequencies. The correlation coefficient for
1.26 GHz is 0.81, comparable to 0.87 for 5.3 GHz, both
correlations are significant at a level of >99.9%. This
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Figure 4. Correlation between the soil moisture contents calculated by the inversion algorithm and those measured by Bolten et al.[2]
and Sano et al.[8].

Table 4. Correlation between calculated soil moisture and in situ measurement.

Number of Correlation Significance,
samples, n coefficient, R S0 RMSD

HH – Bolten et al. 13 0.44 93.38% 6.68%
VV – Bolten et al. 13 0.81 99.96% 5.67%
VV – Sano et al. 20 0.87 >99.99% 7.18%
All VV measurements 33 0.89 >99.99% 6.63%
All measurements 46 0.86 >99.99% 6.64%

indicates that the parameterised SPM works equally well
for the two frequencies.

5. Conclusions
An analytic inversion algorithm based on the SPM model
has been developed to retrieve soil moisture from radar
backscattering coefficient data over bare soil surfaces
using two co-polarised radar measurement data. Based on
the GA, a fitting algorithm has been derived from parame-
terisation of the SPM model for a wide range of soil dielec-
tric constant, incidence angle, RMS height, and surface
correlation length. More than 1000 samples were gener-
ated with the original SPM model followed by multivariate
linear regression analysis to obtain the statistic soil mois-
ture algorithm. This inversion algorithm describes the cor-
relation between the backscattering coefficients and soil

dielectric constant, and is used to retrieve the soil moisture
content from the measured backscattering coefficients.

Numerical comparisons were made to illustrate the
fidelity of the fitting algorithm to the original SPM
model. Results show that the fitting algorithm com-
putes the backscattering coefficients with an average
error of 0.05 dB for HH-polarisation and 0.15 dB for
VV-polarisation. Comparison of the inversion algorithm
with in situ measurement of soil dielectric constants
and backscattering coefficient measurements reported by
Fung et al. [4] shows that the average absolute error of
the backscattering coefficients is 3.3 dB over the inci-
dent angle ranging from 10◦ to 70◦. Comparison of the
soil moisture derived from the inversion algorithm with
simultaneous measurement of soil surface conditions and
radar backscattering coefficients [2,8] shows that: (1)
The soil moisture retrieved from the inversion algorithm
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agrees very well for VV-copolarisation (R = 0.89, in
contrast with R = 1 for perfect agreement); (2) For HH-
copolarisation, agreement between the calculation and
measurement is significant only at 90% significance level.
Due to the limited HH-mode measurements (n = 13), the
agreement is not conclusive for HH-mode. These results
show that the inversion algorithm works fine at least for
the VV-mode.
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