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A B S T R A C T

To capture the temporal variability of parameters of hydrological models, the segmented optimization algorithm
(SOA) is usually used which subdivides the calibration period into a number of sub-periods and seeks optimal
parameters for each sub-period by optimizing the objective function based on the measured and estimated data
in the same sub-period. In this paper, we developed a new method that is called a progressive segmented
optimization algorithm (PSOA), which seeks optimal parameters by optimizing the objective function based on
both the current and all the prior sub-periods.

We applied and compared the SOA and PSOA algorithms to the Snowmelt Runoff Model (SRM) in simulating
snow-melt streamflow for the Manasi River basin, northwest of China, during snowmelt seasons of 2001–2012.
The study showed: (1) PSOA can effectively calibrate the time-variant model parameters while avoiding too
much computational time caused by a significant increase of parameter dimensionality. (2) PSOA outperforms
SOA for both single-snowmelt-season and multi-snowmelt-season simulations. (3) For single-snowmelt-season
simulation, the length of the sub-period has an apparent effect on model performance, the shorter the sub-period
is, the better the model performance will be, when the model is calibrated using the PSOA method. (4) For multi-
snowmelt-season simulation, an over-short sub-period may cause overfitting problems in some cases such as the
situation of taking Nash-Sutcliffe efficiency (NSE) as the objective function. A compromised length of sub-period
and objective function may have to be chosen as a trade-off among evaluation criteria and between the im-
portance of calibration and validation.

1. Introduction

Model calibration, which attempts to estimate values of some cri-
tical model parameters that are not usually available or cannot be
physically measured, is one of the main research topics in the appli-
cation of hydrological models to real case simulations (Gupta and
Sorooshian, 1983; Beven and Binley, 1992; Shamir et al., 2005). The
classical single-objective approaches primarily focus on matching one
aspect of the hydrograph, but other important hydrological processes
implicit in the observations cannot be captured simultaneously (Boyle
et al., 2000). The multi-objective approaches take into consideration of
different aspects of the hydrograph by accounting for the trade-off
among different performance indicators (Gupta et al., 1998; Yapo et al.,
1998; Boyle et al., 2000; Madsen, 2000; Vrugt et al., 2003; Jie et al.,

2016), which not only allow for an analysis of the trade-offs among the
different objective functions but also enable hydrologists to better un-
derstand model structures (Zhou et al., 2014; Jie et al., 2016).

The rainfall-runoff processes are very complex due to a large
number of controlling factors. Some factors such as climatic conditions
and land use/land covers vary in time, leading to a time-varying nature
of hydrological responses over different temporal scales, e.g. annual,
seasonal, monthly and daily scales (Beighley and Moglen, 2002; Merz
et al., 2006; Choi and Beven, 2007; Zhang et al., 2011; Tian et al., 2012;
Hao et al., 2015).

The dynamic nature of hydrological systems brings uncertainties
into hydrological simulations and predictions, posing a challenge to
accurate prediction/forecasting of streamflow. Previous studies have
shown that hydrological processes switch their dynamics between time
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steps/periods, which have not been properly represented by the ex-
isting models, and dynamic calibration of the time varying hydrological
processes will improve the prediction or forecasting ability of the hy-
drological models (Choi and Beven, 2007; Levesque et al., 2008; Zhang
et al., 2011; Kim and Lee, 2014; Kim, 2016; Chen et al., 2018).

The most commonly used approach in the dynamic calibration of
the time varying hydrological processes is to divide the whole cali-
bration time period (e.g. hydrological year and snowmelt season) into
several sub-periods of hydroclimatic similarity, and assume that the
model parameters are constant in each sub-period. For example, Hay
et al. (2009) divided the hydrologic year into three groups based on an
atmospheric pressure index. Kim and Lee (2014) divided the calibration
period into four seasons based on seasonal rainfall and streamflow
patterns; Paik et al. (2005) divided the calibration period into three 4-
month seasons (i.e. warm and dry, rainy, and cold and dry). Zhang et al.
(2015a,b), Kim (2016) and Chen et al. (2018) separated the calibration
period into dry and wet periods. To improve model performance, some
researchers divided the calibration period into sub-periods using clus-
tering methods based on similar characteristics in the data during the
model calibration period, such as the Fuzzy C-mean Clustering method
(Choi and Beven, 2007; Zhang et al., 2011), the traditional k-means
clustering algorithm (de Vos et al., 2010), and the Self-Organizing Maps
based clustering method (Toth, 2009).

Dividing a calibration period into too many sub-periods leads to a
significant increase in the parameter dimension, making parameter
calibration much more complex and time consuming. To overcome the
difficulties, a feasible approach has been developed that calibrates
parameters independently for each sub-period which is referred to as
segmented optimization algorithm (SOA). However, SOA only opti-
mizes parameters of each sub-period to match the observed data just for
that sub-period and not for the whole period. Hence, the optimized
parameters of each sub-period may not be globally optimal. In view of
the drawback of SOA, we proposed a progressive segmented optimi-
zation algorithm (PSOA) for calibrating time-variant parameters of
hydrological models by dividing the calibration period into several sub-
periods and optimizing those parameters of each sub-period to match
the observed data of the whole period. With such an approach, global
solution of parameters for all sub-periods is obtained consequently and
progressively. To test the effectiveness of PSOA compared to SOA, we
took Snowmelt Runoff Model as an example to simulate snowmelt
runoff process with the time-variant parameters in the Manasi River
basin, Northwest China.

The main parts of the paper are organized as follows. The geo-
graphical and hydrological characteristics of the study area, including
the data sources and data preprocessing are described in Section 2. The
SRM model and the proposed calibration algorithm are explicated in
Section 3. The results and discussions about possible effects of objective
functions and sub-period length on model outputs are presented in
Sections 4 and 5. Conclusions are presented in Section 6.

2. Study area and data

2.1. Study area

The Manasi River basin (43°05′N-44°10′N and 85°00′E-86°20′E),
which is located in the Xinjiang Uygur Autonomous Region, Northwest
China, has a total area of 5179 km2 above the Kensiwate (KSWT)
Station (see Fig. 1). The Manasi River basin is one of the biggest irri-
gation areas in China. The Manasi River, about 400 km long, originates
in the northern slope of Tianshan Mountains, and it is the longest inland
river in the Junggar Basin. Land covers in the Manasi River basin take
the form of bare soil, open shrub lands, grassland, wood/grassland,
meadow, and snow/ice.

The Manasi River basin has a typical temperate continental arid
climate. The elevation of the basin ranges from 500 to 5216m above
mean sea level (a.m.s.l.), and the difference in height within the basin

results in significant uneven distributions of temperature and pre-
cipitation. The mean annual air temperature ranges from below 0 °C in
the mountainous areas to approximately 9 °C at the basin outlet.
Precipitation is abundant within the area of elevation between 1500m
and 3600m, where the mean annual precipitation reaches
600–700mm, but it drops to 100–200mm in the piedmont plain (Feng
et al., 2000; Ji and Chen, 2012). Precipitation occurs mainly in summer
(June, July, and August) and less in winter (December, January, and
February) in the form of snowfall. Snow accumulates in winter and
ablates mainly in spring and early summer (June), and it completely
disappears in late summer.

The average annual runoff is about 12.8× 108m3, the intra-annual
distribution of runoff is uneven, with about 9.7, 69.8, 16.5, and 5.0% of
the annual runoff occurring in spring (March–May), summer, autumn
(September–November), and winter, respectively. Meltwater from snow
and glaciers in the spring and summer months accounts for about
35.9% of the annual runoff (Feng et al., 2000). Groundwater flow ac-
counts for a small percentage of the total runoff but it dominates the
streamflow in winter when there is neither rainfall nor meltwater. For
simplicity, meltwater due to snow and glaciers will not be distinguished
in the following discussion, because runoff from meltwater of glaciers
mainly happens in summer and geographically limited only to a small
scale.

There are four hydrological stations at the lower part of the basin:
Meiyao (MY), Kensiwate (KSWT), Qingshuihezi (QSHZ), and
Hongshanzui (HSZ). The HSZ Station has been abandoned since 2006.
To take advantage of the observed data at the other three stations, the
study area is thus taken as the portion of the basin above the KSWT
Station as is shown in Fig. 1. The geographical and hydro-climatic
characteristics of the three stations are listed in Table 1.

2.2. Data sources

The digital elevation model (DEM) used in this study is the Shuttle
Radar Topography Mission (SRTM) data, with the resolution of 90m
(Farr et al., 2007). The SRTM data were downloaded from http://srtm.
csi.cgiar.org/. The DEM data were used for altitudinal belt partition,
zonal area estimation, and temperature and precipitation interpolation.

Daily precipitation and air temperature data observed at the MY,
KSWT, and QSHZ hydrological stations (Fig. 1) from 2001 to 2012 were
used as model inputs. Daily runoff data from 2001 to 2012 at the KSWT
Station were used for model calibration and verification. The data were
obtained from Manasi Hydrological Bureau. The hydro-meteorological
network is very sparse and the three hydrological stations are at the
proximity to the basin outlet, data from this network can hardly re-
present the daily rainfall distribution at the basin level. Thus, the daily
precipitation at different elevation zones was estimated through syn-
thetization of the observations at the three hydrological stations with
the relative annual precipitation gradient derived from corrected Tro-
pical Rainfall Measuring Mission (TRMM) data based on the regression
models for the same study area as was discussed by Ji and Chen (2012).

As there is no operational snow monitoring system established in
the study area, the MODIS snow cover data were used for model si-
mulation. Numerous SRM applications have had success in using snow
data from MODIS (Butt and Bilal, 2011; Georgievsky, 2009; Immerzeel
et al., 2009; Qiu et al., 2013; Tahir et al., 2011). For these studies
conducted in watersheds with size between 500 and 27,000 km2, the
500m resolution of MODIS was found sufficient for estimating the
fraction of snow covered area (Kult et al., 2014). The MODIS 8-day
composite snow cover data product (MOD10A2) has higher precision in
snow classification than MODIS daily products (Zhou et al., 2005;
Huang et al., 2007). In this study we adopted the MODIS 8-day com-
posite product MOD10A2 from March to June during 2001 to 2012 to
derive the fraction of snow-covered area for each zone. The missing
data (2 scenes are missing) were obtained by a linear spatial inter-
polation algorithm, assuming that the change with time between two
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consecutive “8-day” snow fractions is linear. The daily snow fraction of
any date between the two “8-day” periods for each zone is also calcu-
lated by linear spatial interpolation algorithm.

The detailed information about the data is summarized in Table 2.
The daily precipitation at stations MY, QSHZ, and KSWT is the total
precipitation of rainfall and snowfall, there is no detailed information
on whether the total precipitation on a specific day is snow or rainfall.

3. Methodology

3.1. Snow runoff model (SRM)

SRM is a conceptual, semi-distributed, and degree-day (temperature
index) model developed by Martinec (1975). It has been used to si-
mulate, predict, and/or forecast daily runoff resulting from snowmelt

Fig. 1. The boundary, river network, hydrological stations (Kensiwate-KSWT, Meiyao-MY, Qinshuihezi-QSHZ, Hongshanzui-HSZ), and four elevation zones of the
study area.

Table 1
The geographical and hydro-climatic characteristics of the hydrological stations within Manasi River basin from Manasi Hydrological Bureau. * the annual pre-
cipitation in MY Station was obtained from observation period of 1978–2005.

Station Longitude/Latitude Elevation
(m.a.m.s.l)

Control area
(km2)

Annual precipitation
(mm)

Maximum instantaneous
flow (m3/s)

Annual runoff
(mm)

Period of hydro-
climatic statistics

Kensiwate (KSWT) 85°57′19″E/
43°58′14″N

940 5179 339 1100 238 1957–2005

Meiyao (MY) 85°51′49″E/
43°54′34″N

1300 3902 384* 822 261 1954–2005

Qingshuihezi (QSHZ) 86°3′42″E/
43°54′53″N

1320 437 430 96 298 1980–2005

Table 2
Information of the datasets used in this study.

Data Unit Sources periods location

Daily precipitation mm local hydrological
bureau

2001–2012 MY, QSHZ,
KSWT

Daily Temperature °C Same as above 2001–2012 MY, QSHZ,
KSWT

Daily runoff m3/s Same as above 2001–2012 KSWT
DEM m http://srtm.csi.cgiar.

org/SELECTION/
inputCoord.asp

All basin

MOD10A2 m https://nsidc.org/data/
MOD10A2

2001–2012 All basin
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and rainfall in mountainous regions, and has been tested for over 100
basins at different geographical locations and spatial ranges in 29
countries (Martinec et al., 2008). Model input variables include daily
average air temperature, daily total precipitation, and snow cover area.
Based on the input values, the following equation is used in SRM to
calculate the daily streamflow Q (m3/s):

∑= + − × +

+ ×

+ + +Q Q k k C a T T S

C P A

10000
86400

(1 ) ( ( Δ )

)

i i i i
l

l i l i i l i l i

l i l i l

1 1 1 S , , , ,

R , , (1)

where i is the day number (i=1,…, N, N is the total number of days),
Q1 is the observed initial value of daily streamflow value before the
simulation begins. l is the index for each elevation zone (l=1,…, L, L is
the total number of elevation zones). 10000/86400 is the conversion
factor from cm km2 day−1 to m3 s−1, k is the recession coefficient.
Corresponding to the l-th elevation zone, CS and CR are the runoff
coefficients expressing the losses as a ratio of runoff contributed by
snowmelt and rain to precipitation, respectively, of the elevation zone.
a is the degree-day factor (cm°C−1 d−1), T is the number of degree-days
of station (°C d), ΔT is the adjustment by temperature lapse rate when
extrapolating the temperature from the station to the average hypso-
metric elevation of the zone (°C d), S is the fraction of snow covered
area (%), P is the precipitation contributing to runoff (cm), and Al is the
area of elevation zone l (km2).

3.2. Determination of input variables and parameters

SRM is set up with daily input data of air temperature, precipitation,
and fraction of snow covered area. The basin was divided into four
altitudinal zones with a nearly 1000m difference in hypsometric ele-
vation between each two neighboring zones. The elevation boundaries,
areas, land covers of each zone are detailed in Table 3.

3.2.1. Daily zonal mean temperature
The daily zonal mean temperatures were determined by extra-

polating the mean temperature records available at the three hydro-
logical stations by using the lapse rate value. The temperature adjusted
ΔT through temperature lapse rate is computed as follows:

= −T γ h hΔ ( ) 1
100st (2)

where γ is the temperature lapse rate (°C/100m), hst is the altitude of
the hydrological station where temperature was measured, h is the
hypsometric mean elevation of a zone (m).

Studies in various high mountain catchments have shown spatial
and temporal variability of the temperature lapse rate (Tahir et al.,
2011; Zhang et al., 2015a,b). Due to the lack of observed data in the
area, those values were determined based on the study over the same
area by Feng et al. (2000) (Table 4). Since the difference in height
among the observed sites is as large as 400m, validation of those values
using observed data is not possible due to lack of observed temperature
in higher elevation resolution. However, from Table 4 we can see that
except for the lowest Zone A, the temperature lapse rate increases from
March to June in all other zones. In March, the temperature lapse rate
increases with elevation (from 0.50 °C/100m for Zone A to 0.64 °C/
100m for Zone D), while in April the temperature lapse rate remains
almost constant (0.64–0.65 °C/100m). In May, the temperature lapse

rate decreases with elevation (from 0.78 °C/100m for Zone A to
0.70 °C/100m for Zone D). In June, Zones A–C show almost constant
temperature lapse rate (0.77–0.78 °C/100m), but decreases to 0.72 °C/
100m in the highest zone (Zone D). The spatial and temporal varia-
bility of the temperature lapse rate within these zones may indicate the
local climate conditions of the basin.

3.2.2. Critical temperature
A critical temperature TC is used to decide whether a precipitation

event is treated as rainfall or snowfall. The critical temperature is
usually higher than freezing point and diminishes to 0 °C as snowmelt
season progresses. According to meteorological observations at the
Tianshan Snow Observation Station, the critical temperature from the
beginning to the end of the snowmelt season was observed to decrease
from 3.5 to 0 °C (Xu, 1996). Since the Tianshan Snow Observation
Station and the Manasi River basin are both located in Tianshan
Mountain and they are about 100 km apart, we took the daily TC values
from 3.5 °C to 0 °C for the beginning to the end of a snowmelt season for
each zone. The times for the beginning and the end of the snowmelt
season of each zone in the study area are determined based on the
averaged snow ablation curve of multiple years for each zone and they
are listed in Table 5. The daily TC value for the beginning and the end of
each snowmelt season was set to be 3.5 °C and 0 °C, respectively. The
daily TC value for any day in between was interpolated linearly from
3.5 °C to 0 °C.

3.2.3. Precipitation
The precipitation in each zone was estimated by synthesizing the

observed data at the three hydrological stations with the precipitation
gradient. Since no precipitation data are available for the area with the
altitudes above 2000m, and vertical distribution of the precipitation is
uneven (Hu, 2004; Ji and Chen, 2012), the precipitation gradient
cannot be estimated from the rain-gauge observations alone which are
located at downstream. Ji and Chen (2012) found the annual pre-
cipitation gradient in the area was 14.3 mm/100m for Zone B,
−8.1mm/100m for Zone C, and 6.6mm/100m for Zone D based on
the corrected Tropical Rainfall Measuring Mission (TRMM) data for the
period of 1998 to 2009. In this study, the daily precipitation in Zone A
was taken as the average of the observations at the three hydrological
stations; in other zones, they were estimated using the relative pre-
cipitation gradients based on the annual precipitation gradient (Ji and
Chen, 2012) and the base value of the daily precipitation in Zone A, the
daily precipitation in Zone l is computed as follows:

= + dP P hl l lA (3)

where PA is the daily precipitation in Zone A, Pl and hl are the daily
precipitation and altitude, respectively, in Zone l (l=B, C, or D), dl is

Table 3
Definition, areas and land covers of the four zones.

Zone A B C D

Elevation (m a.m.s.l) < 1500 1500–2700 2700–3600 >3600
Area (km2) 250 804 2114 2011
Land cover Desert steppe spruce forest alpine meadow snow/ice

Table 4
The temperature lapse rate (°C/100m) in the study region.

Zone March April May June

A 0.50 0.64 0.78 0.77
B 0.55 0.65 0.75 0.77
C 0.60 0.65 0.73 0.78
D 0.64 0.65 0.70 0.72

Table 5
The beginning and end times of snowmelt season in different zones.

Zone The beginning time The end time

A the 20th of March the 10th of May
B the 10th of April the 30th of May
C the 30th of April the 30th of June
D the first of June the 20th of Augest
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the relative precipitation gradient of Zone l to Zone A.
Precipitation contribution to runoff is considered in SRM according

to different stages of snowmelt season. If the air temperature is lower
than the critical temperature, the precipitation is treated as new snow.
The new snowfall over the snow-free area is considered as precipitation
to be added to snowmelt calculation. Otherwise, if the air temperature
is above the critical temperature, the precipitation as rainfall within the
area of the entire zone is added (Martinec et al., 2008).

3.2.4. Degree-day factor
The degree-day factor was obtained from an empirical relation

(Martinec and Rango, 1986):

=a
ρ
ρ

1.1 s

w (4)

where ρs is the mass density of snow and ρw the mass density of water
that was set to be 1 g/cm3. The density of snow increases as the melt
season progresses from winter to summer and the snowpack becomes
wetter and denser. By referring to the in situ data of ρs in the Tianshan
Mountain (Hu, 2004), ρs values were set for different zones from March
to June (Table 6).

3.2.5. Runoff and recession coefficients
The runoff coefficients for rainfall and snowfall (CR and CS) at a

daily scale increase from lower to higher elevation zones, given other
factors such as soil and topography unchanged, as warmer temperatures
result in higher losses from evapotranspiration or sublimation. In this
study, CS and CR in the zone A were calibrated as the season progresses,
and were set to increase by 10% per zone in other zones, which pro-
duced the best results by using the trial-and-error calibration method.

The recession coefficient k indicates the decline of discharge in a
period without snowmelt or rainfall. Corresponding to the ratio of
runoff on consecutive days without snowmelt and rainfall, k is assumed
to vary with discharge Q as (Martinec et al., 2008):

= =+
+ −k Q

Q
Qρi

i

i
i1

1 σ

(5)

where i, i+1 are the sequence of days during a true recession flow
period. ρ and σ are parameters. Eq. (5) can be reformatted by taking the
natural log on both sides of the equation as:

= ++Q ω φ Qln( ) ln( )i i1 (6)

where ω= ln(ρ) and φ=1− σ. Parameters ω and φ in Eq. (6) can be
obtained through linear regression analysis using the observed dis-
charge data.

In summary, due to the non-uniformity of snowmelt runoff process
throughout the snowmelt season, some parameters (temperature laps
rate, snow density, runoff coefficients, etc.) of snowmelt runoff model
should vary with time to reflect the time-varying characteristics of the
runoff response mechanisms. The temperature lapse rate and snow
density were set to vary monthly over different elevation zones, the
critical temperatures were set to vary daily, and their values were de-
termined in advance (Tables 4–6). The runoff coefficients of snowmelt
and rainfall were also allowed to vary for different length of sub-periods
such as one month, half a month, ten days, and five days; they need to
be calibrated since they are not measurable by definition and can’t be
estimated simultaneously with runoff.

3.3. Calibration algorithm

3.3.1. The segmented optimization algorithm (SOA) algorithm
The SOA algorithm separates the calibration period (e.g. hydro-

logical year) into several sub-periods (e.g. four seasons) (Kim and Lee,
2014). The model parameters to be calibrated in different sub-periods
are assumed to be independent of each other. Optimization is then
performed consecutively and independently in one sub-period followed
by the next till the last one. The objective function for each sub-period
is built upon the observed and simulated data of that period. Any
known optimization method can be used in each sub-period. The pro-
cedure of SOA is shown in Table 7 and Fig. 2. Supposing there is only
one time-varying parameter β, and the whole period is divided into n
sub-periods with the same length of m (e.g. if one year is divided into
12months, each month has a length of 30 days on average, then
n=12, m=30), in each sub-period there are m observed runoff re-
cords. Then the total observed runoff series in the whole period can be
expressed as: O1, O2,…, Onm. Similarly, the total simulated runoff series
can be expressed as: S1, S2, …, Snm corresponding to the β values. The
objective of calibration is to find the best value of β for each sub-period
denoted by β1, β2,…, βn, making objective function f() optimal. The
simulated runoffs in each sub-period i are dependent on βi. The cali-
bration can be implemented through n steps. In each step, the βi is
optimized with the objective function built upon the observed and si-
mulated runoff series of sub-period i.

The SOA algorithm optimizes model parameters of each sub-period
independently. The drawback of such a method is that the parameters
are optimized just based on the observed and simulated runoff of the
current sub-period rather than the whole calibration period.

3.3.2. The progressive segmented optimization algorithm (PSOA) algorithm
To overcome the shortcoming of SOA mentioned above, we propose

PSOA to optimize parameters. The procedure of PSOA includes two
phases (Table 8 and Fig. 3). In the first phase, the parameters of the

Table 6
The mass density of snow in different months and zones (g/cm3).

Zone March April May June

A 0.20 0.24 0.31 0.33
B 0.20 0.23 0.30 0.32
C 0.19 0.22 0.29 0.31
D 0.19 0.22 0.29 0.31

Table 7
The procedure of SOA.

Sub-period No. 1 2 … n

Parameters β1 β2 … βn
Observed runoff series O1, … , Om O1+m, … ,O2m … O1+(n-1)m, … ,Onm

Simulated runoff series S1, … , Sm S1+m, … ,S2m … S1+(n-1)m, … ,Snm
Step1: Seeking optimal β1 ⎧

⎨⎩

…
…

f O O
S S

Opt
( , , ,
, , )β1

1 m

1 m

Step2: Seeking optimal β2 ⎧
⎨⎩

…
…

+

+

f O O
S S

Opt
( , , ,

, , )β2

1 m 2m

1 m 2m

Stepn: Seeking optimal βn ⎧
⎨⎩

…
…

+ −

+ −

f O O
S S

Opt
( , , ,

, , )βn

1 (n 1)m nm

1 (n 1)m nm
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model in each sub-period are optimized separately through n steps from
sub-period 1 to sub-period n. In step 1, the β1 is optimized with the
objective function built upon the observed and simulated runoff series
of sub-period 1. In step 2, the β2 is optimized with the objective func-
tion built upon the observed and simulated runoff series of sub-period 1
and sub-period 2. Accordingly, in step n, the βn is optimized with the
objective function built upon the observed and the simulated runoff
series of sub-period 1 to sub-period n, the simulated runoff series of sub-
period 1 to sub-period n-1 are the results of hydrological model simu-
lation based on optimized β1 to βn-1. In this way, the parameter opti-
mization of the current sub-period takes into account the results of the
optimized parameters of all the previous sub-periods.

In the second phase, the parameters of the model are still optimized
successively through n steps from sub-period 1 to sub-period n. In step i,
the βi is optimized with the objective function built upon the observed
and simulated runoff series of all the sub-periods, in which the simu-
lated runoff series of sub-periods 1 to i− 1, and sub-periods i+1 to n
are from the most lately simulated results. The calibration in the second
phase will be repeated until the improvement of the whole objective
function is less than a given tolerance. The characteristic of the cali-
bration in the second phase is that the parameters of each sub-period
are globally optimized after recursive optimization. In such a way, the
shortcomings in the calibration of time-varying parameters using the
SOA method can be overcome. As far as we know, there is no similar
method in the literature.

3.4. The model evaluation criteria

In order to evaluate statistically the accuracy of the calibrated and

validated runoff outputs using the new calibration method, different
parts of the hydrograph should be considered with the appropriate
evaluation criteria. Low and high flows need to be simulated well and a
good mass balance is also required. In this study, the following three
commonly used criteria were employed: the Nash-Sutcliffe efficiency
(NSE), the NSEln (the NSE calculated using log-transformed discharge)
and volume difference (Dv).

NSE is given by (Nash and Sutcliffe, 1970)

= −
∑ −
∑ −

=

=

O S
O O

NSE 1
( )
( )

i i i

i i

1
n 2

1
n 2 (7)

and NSEln is given by

= −
∑ −
∑ −

=

=

lnO lnS
lnO lnO

NSE 1
( )
( )

i i i

i i
ln

1
n 2

1
n 2 (8)

where Oi is the observed daily discharge, Si is the simulated daily dis-
charge, if Oi or Si is equal to 0, it should be set to a small positive value
less than 1. O is the average observed discharge, and i is the day
number, i=1, …, n, where n is the total number of daily discharge
records.

The Dv (%) is given by

= − ′V V
V

Dv *100 (9)

where V is the observed runoff volume and ′V is the simulated runoff
volume.

NSE has been widely employed to evaluate the performances of
hydrological models, and it tends to emphasize the high or peak flows.

Fig. 2. A sketch of processing flow of the SOA al-
gorithm. The top row is the series of sub-periods.
The second row from the top is the corresponding
series of parameters to be optimized. The other
rows represent the process of optimization during
the specific sub-period. The length of arrow in step i
represents the number of sub-periods during which
the observed and simulated runoffs are used to find
optimal solutions of parameter βi.

Table 8
The procedure of PSOA.

Sub-period No. 1 2 … N
Parameters β1 β2 … βn
Observed runoff series O1, … , Om O1+m, … , O2m … O1+(n-1)m, … , Onm

Simulated runoff series S1, … , Sm S1+m, … , S2m … S1+(n-1)m, … , Snm
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⋯
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NSEln places more emphasis on fitting low flows (Chen et al., 2018).
The Dv is a measure of the average deviation between the simulated
and observed volumes.

From a multi-objective viewpoint, all criteria could not reach their
best values simultaneously, a balanced, compromised, aggregated
evaluation considering different criteria should be made. In this study,
the Euclidian distance function was adopted as another criterion

= − + − +NND (1 NSE) (1 NSE ) (Dv/100)2
ln

2 2 (10)

where NND is the Euclidian distance from the ideal point of NSE, NSEln
and Dv. All the three components are dimensionless, and their ideal
values are 1, 1, and 0, respectively. The smaller the NND is, the better
the model performance will be. If the three components have different
range or scale, weighting factors can be used for adjusting the emphasis
on different components (Gupta et al., 2009).

The four criteria were also taken as objective functions in analyzing
the effects of different objective functions on the SRM performances
using the PSOA algorithm.

3.5. Comparison of the SOA and PSOA algorithms in snowmelt runoff
simulation using SRM

The parameters of CS and CR were calibrated and the model per-
formance was evaluated by using the calibration algorithms, SOA and
PSOA, in the following procedure: Firstly, the SRM calibration for each
snowmelt season from March to June during the 2001–2012 period was
conducted separately using the two calibration algorithms, obtaining
two optimal sets of CS and CR for each snowmelt season by both algo-
rithms. Secondly, the long-term snowmelt runoff for all snowmelt sea-
sons was simulated as a whole by the SRM model using both algorithms
with a split-sample procedure (calibration and validation phases), only
two sets of CS and CR were obtained by both algorithms during cali-
bration phase. The enumeration approach was adopted in each step of
both algorithms to search for optimal values of CS and CR from all
possible combined sets of them within adjustment ranges. The initial
runoff was set as follows: for the first sub-period, it was set to be the

observed streamflow of the day before the sub-period; for the following
sub-periods, it is the simulated streamflow at the end of the previous
sub-period. The effects of different lengths of sub-periods and objective
functions on the model performance were also analyzed.

4. Results

4.1. The performance of the SOA and PSOA algorithms for the SRM
calibration in each snowmelt season

To evaluate the performance of the PSOA algorithm in reference to
the standard SOA algorithm, the calibration of snowmelt runoff for each
snowmelt season during 2001–2012 was conducted with NSE as the
objective function. The parameters CS and CR to be calibrated were
allowed to vary within the range of 0.2 and 0.75 at a discrete size of
0.01 for each sub-period. The recession coefficient related parameters ρ
and σ were calculated to be 1.076 and 0.055, respectively, based on the
recession discharge data of the snowmelt seasons from 2001 to 2012 at
the KSWT Station.

4.1.1. The statistics of the model performance
Tables 9 and 10 show the summary of the calibration results for 12-

year snowmelt seasons in terms of NSE, NSEln, Dv and NND, respec-
tively, using the two calibration methods with different sub-periods (i.e.
one month, half a month, ten days, and five days). The variability of
models’ performance criteria using the two calibration methods is
provided using box-and-whisker diagrams in Fig. 4.

It can be seen from Table 9 and Fig. 4(a) that for any given sub-
period, the mean and standard deviation (SD) of NSE, obtained by
PSOA are better than those by SOA. It is also seen that the mean, SD,
and three quartiles of NSE by PSOA show continuous improvements
when the length of sub-period becomes shorter. But this is not always
the case by SOA.

Table 9 and Fig. 4(b) show the changes of NSEln with calibration
sub-period. For most sub-periods, the mean of NSEln is improved using
the PSOA method compared to the SOA method, although the max-
imized NSE does not guarantee a maximized NSEln. When the length of

Fig. 3. A sketch of processing flow of the PSOA
algorithm. The top row is the series of sub-periods.
The second row from the top is the corresponding
series of parameters to be optimized. The rows in
the first phase is the process of optimization in the
first phase for each sub-period. The difference of
the PSOA algorithm from the SOA algorithm
during this phase is that optimization in the step i
considers all previous sub-periods. The rows in the
second phase represent the process of optimization
of parameter corresponding to each sub-period
during the second phase within the whole cali-
bration period (sum of all the sub-periods). The
length of arrow in step i represents the number of
sub-periods during which the observed and simu-
lated runoffs are used to find optimal solution of
parameter βi.
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sub-period becomes shorter, the mean and three quartiles of NSEln
obtained by PSOA show a little bit of improvement. But those of NSEln
by SOA do not always improve and even deteriorate. Besides, the SDs
obtained by PSOA reach a stable state when the length of sub-period
becomes shorter, whereas SDs obtained by SOA are unstable, even
though they are better than those by PSOA for some sub-periods.

Table 10 and Fig. 4(c) show the changes of Dv with calibration sub-
periods. It can be seen that for a given sub-period, although NSE is
selected to be maximized, the mean (the average of all absolute Dv
values), SD and three quartiles of the simulated flow volumes are im-
proved more obviously using PSOA than SOA. When the sub-period
becomes shorter, the mean, SD and three quartiles of Dv obtained using
the PSOA method also show a stable state, while those using the SOA
method show an increasing trend.

Table 10 and Fig. 4 (d) show the changes of NND with calibration
sub-periods. For a given sub-period, both mean and SD of the NND
values are improved using the PSOA method compared to the SOA
method, although NSE is maximized. Besides, the mean, SD and three
quartiles of NND obtained by PSOA show improving trends when the
length of sub-period becomes shorter, but those by SOA do not always
improve and even deteriorate when the sub-period becomes shorter.

In conclusion, the statistics of the four criteria obtained by the PSOA
method are better than those by the SOA method for a given sub-period.
The statistics by PSOA show improving trend or stable state when the
lenth of sub-period becomes shorter, but those by SOA do not always
improve and even deteriorate.

4.1.2. Simulated daily runoff hydrographs
Fig. 5 shows the observed and simulated daily runoff hydrographs

using the PSOA and SOA methods for each snowmelt season between
2001 and 2012 with a sub-period of five days. It can also be seen ap-
parently from Fig. 5 that PSOA produced an overall better agreement
with the observed runoff curve than SOA. The time of the simulated
hydrograph peaks using PSOA and SOA is similar, but the peak values
by PSOA match better to the observed values.

All results discussed in Section 4.1 show that the PSOA method
performs better than the SOA method in parameter calibration.

4.2. The performance of the SOA and PSOA algorithms in long-term
snowmelt runoff simulation using SRM

The long-term snowmelt runoff simulation using SRM was con-
ducted for the snowmelt seasons of 2001–2012 by using the SOA and
PSOA calibration algorithms. Model calibration was performed for the
snowmelt seasons of 2001–2008 while validation was for 2009–2012.
During calibration, NSE was selected as the objective function. CS and
CR of zone A were both calibrated for the same sub-period for the
snowmelt seasons of 2001–2008 (e.g. CS or CR have unique value for
each snowmelt month of 2001–2008 taking one month as sub-period),
which were also allowed to vary within the range of 0.20 and 0.75 at a
discrete size of 0.01. The parameters ρ and σ that are related to reces-
sion coefficient during calibration and validation phases were calcu-
lated to be 1.086 and 0.059, respectively, using the recession discharge
data of the snowmelt seasons from the calibration period (2001 to
2008) at the KSWT Station, assuming that they are unknown during
validation phase.

4.2.1. Calibrated values of CS and CR using PSOA algorithm
Table 11 shows the calibrated CS and CR values from the PSOA

calibration only, since the changing pattern of CS and CR values cal-
culated from SOA was similar. It can be seen from the table that CS

value decreases from March to May, and then increases slightly in June,
and CR decreases from March to April, and then increases slightly in
May and June for all lengths of sub-period, although there are some
sudden jumps when the length of sub-period become short. From March
to May, warmer temperatures result in higher snowmelt or rainfall
losses from evaporation and infiltration, resulting in the decrease of CS

and CR. Some sudden jumps in CS and CR may be caused by the model
considering the varied hydrometeorological, snow cover ratio and soil
moisture conditions in much more details when the length of sub-period
become shorter.

4.2.2. The model performance in the calibration and validation phases using
the SOA and PSOA algorithms

The average values of NSE, NSEln, Dv and NND from the calibration
and validation phases with different sub-periods using the two cali-
bration algorithms are shown in Figs. 6 and 7. It can be seen that the

Table 9
The 12-year means and SDs of NSE and NSEln obtained for different lengths of sub-period by using the SOA and PSOA calibration methods. Im* indicates the relative
increase by PSOA (%) for the same sub-period.

NSE NSEln

One month Half a month Ten days Five days One month Half a month Ten days Five days

mean SOA 0.850 0.871 0.871 0.863 0.913 0.913 0.923 0.895
PSOA 0.854 0.883 0.894 0.907 0.904 0.920 0.925 0.929

Im* in mean 0.4 1.4 2.6 5.1 −1.0 0.7 0.2 2.8
SD SOA 0.126 0.118 0.113 0.115 0.051 0.049 0.037 0.067

PSOA 0.123 0.108 0.102 0.102 0.065 0.055 0.052 0.053
Im* in SD 2.4 8.5 9.7 11.3 −27.5 −12.3 −40.5 20.9

Table 10
The 12-year means and SDs of Dv and NND obtained for different lengths of sub-period by using the SOA and PSOA calibration methods. Im* indicates the relative
increase by PSOA (%) for the same sub-period.

Dv NND

One month Half a month Ten days Five days One month Half a month Ten days Five days

mean SOA 4.52 6.25 7.66 11.86 0.183 0.174 0.176 0.217
PSOA 3.18 3.09 3.24 3.16 0.182 0.149 0.139 0.127

Im* in mean 29.6 50.6 57.7 73.4 0.6 14.4 21.0 41.5
SD SOA 6.47 7.81 9.30 11.94 0.138 0.135 0.137 0.153

PSOA 4.05 4.86 5.31 5.23 0.135 0.122 0.116 0.118
Im* in SD 37.4 29.7 42.9 56.2 2.2 9.6 15.3 22.9
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average NSE values obtained using PSOA are larger than those using
SOA for all sub-periods in both the calibration and validation phases.
The average values of NSEln, Dv and NND are also improved using the
PSOA method in both the calibration and validation phases. It can also
be seen that during the calibration phase the average values of NSE,
NSEln, and NND obtained using the PSOA method show increasing
trends of improvements when the length of sub-period decreases, while
there is no such trend using the SOA method. Besides, NSE, NSEln, and
NND improve more using PSOA than SOA when the length of sub-
period is reduced. All the results indicate that PSOA is more robust than
SOA, and suggest the superiority of PSOA to SOA, especially when the
sub-period is short.

4.3. Effects of different objective functions and sub-periods on model
performance

The results of the average values of NSE, NSEln, DV, and NND for
various sub-periods and different objective functions are shown in
Figs. 8 and 9 for the calibration and validation phase, respectively. It is
seen that different objective functions result in similar model perfor-
mance in both the calibration and the validation phases for a given sub-
period, except for the objective function Dv, which results in an ap-
parently worse performance for the sub-period of five days.

The impacts of the sub-period length on model performance for
different objective functions are complex. Taking all the four evaluation
criteria into consideration, during the calibration phase the model
performance is improved continually when the length of sub-period
becomes shorter for any objective function except for the Dv. However,
in the validation phase there is no improvement or any other varying
patterns when the length of sub-period is getting shorter. This phe-
nomenon is probably due to over fitting, over fitted simulation in the
calibration phase leads to poor prediction in the validation phase.
Thefore, a compromised length of sub-period and objective function
may have to be chosen as a trade-off among evaluation criteria and
between the importance of calibration and validation phases based on
the objective of the model application.

Generally, Dv, which is usually used as a criterion of model

performance focusing on volumes, was not recommended to take as the
objective function for dynamic streamflow prediction because its
weakness in accounting for the day-to-day difference between observed
and simulated discharge. Hence, it is thus expected that the model with
Dv as an objective function shows unstable performance for different
lengths of sub-period in this case study.

5. Discussions

The hydrological processes and precipitation-runoff relationship are
generally complex, which change not only within years or decades, but
also in seasons. To capture the time-varying nature of hydrological
processes and reduce model uncertainty it is necessary to allow key
parameters of hydrological models varying with time during model
calibration and validation stages (Levesque et al., 2008; Zhang et al.,
2011; Kim and Lee 2014; Kim 2016). A most approachable method is to
divide the hydrological year into several sub-periods, and assume that
the model parameters are constant in each sub-period. This approach is
equivalent to approximating a smooth curve in time with a function of
steps. The smaller the sub-periods are, the better the approximation will
be. Both the SOA and PSOA algorithms are such approaches. Obviously
they are not perfect but both are at least better than taking the model
parameters as constant during the whole calibration period while they
are in fact variable. It should be noted that the selection of parameters
to be optimized is important. The selected parameters must be time
variant, and a certain jump in parameter values between two adjacent
sub-periods is tolerable. Generally, constant parameter such as max-
imum capacity of soil storage can not be optimized in each sub-period.
If such a parameter is optimized sub-period by sub-period, continuity
problems in the water balance will occur when the parameter value
changes from one sub-period to the next. For instance, if the capacity is
100mm and the content in the store is 90mm at the end of the first
period, and the capacity on the next period is 80mm, what is done with
the 10mm over the capacity? Therefore, the selection of parameters to
be optimized must be done with due care, when applying a calibration
algorithm such as SOA and PSOA. There are two ways to partition the
whole data period into sub-periods, one is dividing the observation data

Fig. 4. Variabilities with calibration sub-periods of NSE (a), NSEln (b), Dv (c) and NND (d) values calculated using the two calibration algorithms over the 12
snowmelt seasons (2001–2012).
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into several periods of hydroclimatic similarity; the other way is to
directly divide the calibration period into several sub-periods with the
same length. In the second way, extensive efforts on classifying the
whole calibration period into too many sub-periods with different
lengths based on hydro-meteorological characteristics can be avoided.

Generally, the evaluation criteria such as NSE, NSEln and Dv will get
improvement when the length of sub-period becomes shorter using
calibration method such as the PSOA algorithm. This is the situation in
calibration phase in our case study, however, in the validation phase,
the criteria do not always improve accordingly, resulting in overfitting
problems, which indicates that the model does not always produce

better performance with too short sub-periods in the validation phase.
Such overfitting problems are not caused by calibration algorithm itself,
but probably by factors such as the structure of the hydrological model
used, non-stationarity of the snowmelt runoff process between the ca-
libration and validation phases, lack of ‘power’ in the objective func-
tion, etc. (Gupta et al., 2009). Other important factors may include that
the model considers the hydrological characteristics with too many
details when a too short sub-period is adopted in the calibration phase.
A short sub-period increases the number of calibrated parameters and
makes these parameters vary irregularly (see Table 11), leading to poor
performance in validation phase. Hence, a compromised sub-period
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Fig. 5. The observed and calculated daily runoff hydrographs with a sub-period of five days.
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should be chosen as a trade-off between the importance of calibration
and validation.

There are many factors affecting the model performance: the quality
of the observed data as inputs, the accuracy of the values of the non-
calibrated parameters, and accuracy of the calibrated model para-
meters. For SRM, the important model inputs are the fraction of snow
covered area, the precipitation (snow or rain), air temperature data,
and the number of elevation zones. The model’s key parameters include
the runoff coefficients of snowmelt and rainfall, the degree-day factor,
and the temperature lapse rate. In the present study, although only two
model parameters, i.e., the runoff coefficients of snowmelt and rainfall,
were calibrated, there is no limit of the number of parameters to be
calibrated in the calibration methods such as PSOA and SOA

themselves. However, the more parameters to be calibrated is, the more
difficult it is to obtain their optimal values and to evaluate them on
short sequences. For the current case study on the Manasi River basin,
due to spare hydro-meteorological stations, input data such as pre-
cipitation for each zone were estimated based on the observed records
and corrected TRMM data for the same study area. Some model para-
meters were predetermined based on the references (Xu, 1996; Feng
et al., 2000; Hu, 2004), and the time variant parameters such as the
temperature lapse rate and the mass density of snow only were allowed
to change monthly. If daily temperature and precipitation are obtained
directly from new data sources such as MODIS and TRMM, or the
temperature lapse rate and the mass density of snow are allowed to
change with different length of sub-periods, and more elevation zones
are considered, the model performance using PSOA might be different.

In this study, all results show that the proposed new calibration
algorithm (PSOA) outperforms the SOA algorithm. Detailed comparison
with SOA showed that the model performance is better than SOA for
both single-snowmelt-season and multi-snowmelt-season simulations in
terms of NSE, NSEln, Dv and NND. The improvement of model per-
formance using PSOA over SOA for calibration should be generally true,
but the extent of the improvement by PSOA over SOA is expected to
depend on a basin’s characteristics, the model structure, the quality of
input data, the values of non-calibrated parameters, and sub-period
length for calibration. A further research on the performance of PSOA in
different basins would need to be carried out.

6. Summary and conclusions

In this study we proposed a progressive segmented optimization
algorism (PSOA) for calibrating time-variant parameters of hydro-
logical models. The algorithm was applied to simulate snowmelt runoff
during the snowmelt seasons of 2001–2012 taking the Manas River
basin of Xinjiang, China as a test site using the SRM model. The PSOA
and standard SOA algorithms were compared and evaluated for both
single-snowmelt-season calibration and multi-snowmelt-season simu-
lation (2001–2008 as the calibration phase and 2009–2012 as the va-
lidation phase). The effects of objective functions and sub-period length
on model performance have also been analyzed. The study concluded
that:

1) PSOA can effectively calibrate the time-variant model parameters

Table 11
Calibrated values of CS and CR using PSOA (2001–2008).

Sub-period One Month Half a month Ten days Five days

CS CR CS CR CS CR CS CR

March 0.470 0.750 0.750 0.750 0.750 0.750 0.750 0.200
0.750 0.750

0.750 0.750 0.750 0.200
0.340 0.750 0.410 0.750

0.320 0.750 0.750 0.750
0.230 0.690

April 0.260 0.200 0.290 0.200 0.320 0.420 0.350 0.390
0.200 0.200

0.260 0.200 0.330 0.200
0.200 0.200 0.200 0.200

0.200 0.200 0.200 0.200
0.200 0.200

May 0.200 0.240 0.390 0.200 0.200 0.200 0.200 0.200
0.200 0.200

0.300 0.200 0.570 0.200
0.200 0.260 0.200 0.200

0.200 0.290 0.300 0.200
0.200 0.470

June 0.290 0.290 0.200 0.340 0.200 0.360 0.200 0.340
0.200 0.320

0.520 0.200 0.700 0.200
0.440 0.200 0.430 0.200

0.390 0.200 0.430 0.200
0.330 0.200
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while avoiding too much computational time caused by a significant
increase of parameter dimensionality.

2) For any given sub-period, PSOA outperforms SOA in terms of NSE,
NSEln, Dv, and NND both in the model calibration of single-snow-
melt-season and in multi-snowmelt-season simulation for both ca-
libration and validation periods, as SOA seeks optimal parameters
for the sub-period by optimizing the objective function based on the
measured and estimated data only in the same sub-period, while
PSOA seeks optimal parameters by optimizing the objective function
based on both the current and all the prior sub-periods.

3) For single-snowmelt-season calibration, the length of the sub-period
has apparent effect on model performance, the shorter the sub-
period is, the better the model performance will be when the model
is calibrated using the PSOA method.

4) In multi-snowmelt-season simulation using the PSOA algorithm, the
model performances have little difference in all evaluation criteria

when NSE, NSEln, and NND are used as the objective functions, but
much better than the case when Dv is used as the objective function,
especially for the sub-period of five days.

5) For multi-snowmelt-season simulation, too short sub-periods may
cause overfitting problems when selecting some functions as ob-
jectives. A compromised length of sub-period may have to be chosen
as a trade-off between the importance of calibration and validation
in such a case.

The proposed PSOA method in the present study can be adopted for
multi-snowmelt-season calibration, which can identify more effective
parameter set, and improve model performance. Besides, the idea of the
PSOA method can be beneficial for multi-period optimization searching
for global optimal solution. According to the principle of the PSOA
algorithm, it can be used for multi-snowmelt-season calibration not
only for a single length of sub-period but also for different lengths of
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sub-period in order to better capture the time varying nature of the
hydrological process at variant time scales.
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