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ith horizontally and vertically dependent density contrast
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ABSTRACT

Line integrals �LIs� are an efficient tool in calculating
the gravity anomaly caused by an irregular 2D mass body
because the 2D surface integral is reduced to a 1D LI. Histori-
cally, LIs have been derived for 2D mass bodies of depth-de-
pendent density contrast. I derive LIs for 2D mass bodies
with density contrast dependent on �1� horizontal and �2� hor-
izontal and vertical directions.Assuming the density contrast
depends only on horizontal position, two types of representa-
tive LIs are derived: LIs with logarithmic kernel and density-
integrated LIs for any integrable density-contrast function. A
general density-contrast model that depends on horizontal
and vertical directions is developed to include three compo-
nents: a function of horizontal position, a function of vertical
position, and a sum of crossterms of horizontal and vertical
positions. Based on the general density-contrast model de-
fined and proper selection of 2D vector gravity potentials,
general LIs are derived to calculate the gravity anomaly. The
newly developed LI method is then compared with two cases
from the literature in calculating gravity anomaly, and agree-
ment is obtained. However, the new LI method allows for
more general 2D density-contrast variations and can be used
to calculate the gravity anomaly of a 2D mass body. Such a
mass body can have any cross-sectional profile that can be
approximated by a polygonal cross section with any density-
contrast function that can be approximated by a rich set of
basis functions.

INTRODUCTION

Dimensional reduction in the computational domain in forward
odeling or inversion in geophysical exploration is an efficient way

or a fast solution. In principle, the gravity anomaly caused by a 2D
ass with any density-contrast function can be computed via a nu-
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erical surface integral. Converting a 2D areal integral to 1D line in-
egrals �LIs� in gravity anomaly calculations can reduce the compu-
ational time significantly, except for cases in which the cross section
f the mass body is very elongated or when all of the integrations can
e performed analytically �e.g., Pohánka, 1988, 1998; Hansen,
999; Holstein, 2003�. Generally, when a 2D areal integral is re-
uced to a 1D LI, a surface with an order of N2 internally discretized
lementary grids can be expected to have an order of N boundary ele-
ents. The number of integration steps can be reduced from an order

f N2 to an order of N. Thus, a reduction by an order of N in computa-
ional time can be expected by using the LI method. The gain arises
rom reducing a numerical areal integral to a sum of numerical LIs.
his reduction is significant, making the LI method efficient and
ttractive.

To rapidly calculate gravity anomalies caused by a 2D mass of
omplex geometry and variable density contrast using the LI meth-
d, defining the LIs is the key starting point. Historically, LIs have
een obtained for 2D masses of constant or depth-dependent density
ontrast �Hubbert, 1948; Murthy and Rao, 1979; Zhou, 2008�. Hub-
ert �1948� obtains an LI for 2D masses of constant density for cal-
ulating gravity anomaly, the foundation for Talwani et al.’s �1959�
lassic computational scheme for rapid computation of gravity re-
ulting from irregular 2D masses when the mass density is constant.

urthy and Rao �1979� extend Hubbert’s LI to cases when the mass
ensity contrast is a function of depth.

Using Stokes’ theorem and the right-hand rule in converting a 2D
real integral for gravity anomaly to a 1D LI, Zhou �2008� defines a
D vector gravity potential. Based on the nonuniqueness character-
stics of the 2D vector gravity potential for a specific problem, he de-
nes two types of LIs for computing gravity anomalies because of
D masses of complex geometry and depth-dependent density con-
rast. The first type is LIs with arctangent kernel for any density-con-
rast function in depth. The second type is density-integrated LIs
ith algebraic kernel when the density-contrast function is integra-
le. As shown by Zhou �2008�, these LIs are computationally effi-
ient in gravity anomaly calculations that involve a depth-dependent
ensity contrast of very broad interest �Cordell, 1973; Murthy and

vember 2008; published online 20 February 2009.
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I2 Zhou
ao, 1979; Rao, 1986; Chai and Hinze, 1988; Litinsky, 1989; Rao et
l., 1990; García-Abdeslem, 1992; Rao et al., 1994; Pohánka, 1998;
ansen, 1999; Holstein, 2003; García-Abdeslem et al., 2005; Silva

t al., 2006; Chakravarthi and Sundararajan, 2007; Chappell and
usznir, 2008�.
However, the density contrast of earth material also can be depen-

ent on horizontal position or on horizontal and vertical positions
Gendzwill, 1970; Cordell, 1979; Pan, 1989; Ruotoistenmäki, 1992;

artín-Atienza and García-Abdeslem, 1999; Zhang et al., 2001�.
or gravity anomaly calculation at the surface, intrusions or folded
edimentary units could have an arbitrary density function in the
orizontal direction and a polynomial density distribution in the ver-
ical direction. On the other hand, dipping layered intrusions or sedi-

entary beds could have an arbitrary density function of depth and a
olynomial function of horizontal coordinates �Ruotoistenmäki,
992�.

The objective of this paper is to derive LIs for geological prob-
ems in which the density contrast depends on horizontal or on hori-
ontal and vertical directions. First, a general density model that
ncompasses a broad range of geologic settings is to be developed.
ased on the general density-contrast model, proper 2D vector grav-

ty potentials are selected. The gravity anomaly is defined as the LIs
f the components of the 2D vector gravity potentials along the con-
our of an irregular mass body. Because LIs for such problems have
ot yet been studied, the LIs derived for a 2D irregular mass body
ith any density-contrast function that can be approximated by a

ich set of basis functions will be very useful in rapid computation of
ravity anomaly. Then, applications of these general LIs to gravity
nomaly calculations for a broad range of geological settings will be
iscussed.

GENERAL DENSITY-CONTRAST MODEL
FOR 2D MASS BODIES

In 2D gravity anomaly calculations, most past studies consider the
ensity contrast as a constant �e.g., Bott, 1960; Corbató, 1965; Po-
ánka, 1988; Ferguson et al., 1988; Litinsky, 1989�, as a function of
epth only �Cordell, 1973; Murthy and Rao, 1979; Rao, 1986; Chai
nd Hinze, 1988; Litinsky, 1989; D. B. Rao et al., 1990; García-Ab-
eslem, 1992; C. V. Rao et al., 1994; García-Abdeslem et al., 2005;
ilva et al., 2006; Chakravarthi and Sundararajan, 2007; Chappell
nd Kusznir, 2008�, or as a unidirectional function in 3D �Pohánka,
998; Hansen, 1999; Holstein, 2003�. The dependence of density
ontrast on depth is primarily because of mechanical compaction
nd diagenesis resulting in reduced porosity and thus is of general in-
erest �Guspí, 1990; Zhang et al., 2001; Chappell and Kusznir,
008�.

There also are several studies considering the density contrast as a
unction of horizontal coordinates or as a function of horizontal and
ertical positions �Gendzwill, 1970; Cordell, 1979; Pan, 1989; Ruo-
oistenmäki, 1992; Martín-Atienza and García-Abdeslem, 1999;
hang et al., 2001�. Cordell �1979� proposes that lateral variations
an be caused by fan development, with the absolute value of density
ontrast increasing toward the center of the basin. Vertically layered
ntrusives can have a density-contrast function varying horizontally.
he reason is that vertically homogeneous rocks can be metamor-
hosed, so there is a gradual horizontal change in density between
wo rock types �Gendzwill, 1970; Ruotoistenmäki, 1992�. On some
ccasions, the density contrast in such a density transition zone can
e approximated as horizontally linear �Gendzwill, 1970; Pan,
989�. Pan �1989� uses a linear horizontal density-contrast model to
stimate the depth of a sedimentary basin adjacent to the master fault
ssociated with the Rio Grande rift in New Mexico. The surface den-
ity contrast may vary significantly within a relatively short horizon-
al distance because of the differing lithological character of the
ocks forming various parts of the surface topography, or it may
hange considerably even within the same sand body if part of it is
emented to sandstone �Vajk, 1956�. For dipping layered intrusions
r sedimentary beds, the density may vary horizontally. For all of
hese cases, the density is often modeled as a polynomial function of
orizontal coordinate x �Ruotoistenmäki, 1992�, with the linear
unction as a special case.

In some areas, different rock types are separated by interbedding,
ntrusive rocks such as plutons characterized by lit-par-lit structures
t their contacts. Steeply dipping sequences of beds and long-term
ontact metamorphism result in density changes. In these cases, the
ensity contrast is often modeled as piecewise continuous functions
f x �Pan, 1989; Ruotoistenmäki, 1992�.

Complicated geologic and geochemical processes in the diagene-
is of rocks, such as nonuniform stratification, physical and chemi-
al cementations, volcanic eruptions and structural disruptions, and
eterogeneous metamorphisms, often cause the density distribution
o be more complicated than a simple function of one dimension,
orcing us to consider an arbitrary variation of density contrast in
ravity anomaly modeling �Martín-Atienza and García-Abdeslem,
999; Zhang et al., 2001�. To accommodate a broad variety of geo-
ogic formations, I consider the following density-contrast model as
general case:

���x,z� � h�x� � v�z� � �
j�1

Nx

�
k�1

Nz

Djk� j�x�� k�z� . �1�

he first and second terms in equation 1 describe the components of
he density contrast that depend only on horizontal x and vertical z
irections, respectively. The third term describes a sum of cross-
erms of the density contrast that depends on horizontal and vertical
ositions. Index j � 1,2, . . . ,Nx, and k � 1,2, . . . ,Nz. The values Nx

nd Nz are the number of functions that depend only on x and z, re-
pectively; Dik is the coefficient of each crossterm. If the first and
hird terms in equation 1 are zero, the general density-contrast model
egenerates to the depth-dependent model, the LIs of which are
tudied systematically by Zhou �2008�. If the second and third terms
re zero, the general model degenerates to the horizontal-position-
ependent model, the LIs of which are derived in the next section. If
j�x� � xj and � k�z� � zk in the third term of equation 1, it repre-
ents a polynomial function that is usually a least-squares fit to the
ensity logging data, a special case studied by Zhang et al. �2001�.

LIs FOR DENSITY CONTRAST VARYING
WITH HORIZONTAL POSITION

Consider the geometry of a 2D mass body �Figure 1� that is infi-
itely long in the y-direction and whose mass density contrast is a
eneral function of x and z. The vertical component of gravity anom-
ly at point P�xi,0� is

gz�xi,0� � 2G��
S

���x,z�z
�x � xi�2 � z2dxdz , �2�

here G is Newton’s gravitational constant. This is the general form
f a 2D areal integral for calculating gravity anomaly at any point
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General line integrals for 2D masses I3
�xi,0� along the x-axis because of 2D masses with density contrast
arying horizontally in x and vertically in z.

Is with logarithmic kernel

Let us first consider the cases where the density contrast is only a
unction of horizontal position, i.e., ���h�x�. By definition, a 2D
ector potential A satisfies �Zhou, 2008�

�Ax

� z
�

�Az

�x
�

2Gh�x�z
�x � xi�2 � z2 , �3�

o the vertical component of gravity anomaly caused by a 2D mass
ecomes

gz�xi,0� ���
C

�Axdx � Azdz� . �4�

quation 4 means that the gravity anomaly caused by a 2D mass is
qual to the net circulation of the 2D vector gravity potential A along
he closed contour C bounding the mass. Let me choose the 2D vec-
or gravity potential A that satisfies equation 3 as follows:

�Ax � Gh�x�ln��x � xi�2 � z2�
Az � 0

� . �5�

nserting equation 5 in equation 4, the vertical component of the
ravity anomaly becomes

gz�xi,0� � 	
C

A · dl � G��
C

h�x�ln��x � xi�2 � z2�dx ,

�6�

here dl is a differential length along contour C. Equation 6 is called
n LI with logarithmic kernel for density contrast varying with hori-
ontal position because it contains a logarithmic function in its inte-
rand. The counterpart of the LI with a logarithmic kernel for the
orizontally dependent model is an LI with arctangent kernel for the
epth-dependent density-contrast model, studied by Zhou �2008�.
he LIs with a logarithmic kernel have not been studied but are di-

ect results of defining a 2D vector gravity potential �Zhou, 2008�.
hen �� � ��0, equation 6 becomes Hubbert’s LI �Hubbert,

948�, as it does for the depth-dependent case �Zhou, 2008�, because
oth represent the same constant density-contrast model.

Is with algebraic kernel

Assume that the density-contrast function �� � h�x� is integra-
le. Let me define a density-contrast integral as

F�x� �
1

x � xi
� h�x�dx � C0, �7�

o that

F�x�� �
dF�x�

dx
�

���x� � F�x�
x � xi

. �8�

he value C0 in equation 7 is a constant that is independent of x for a
pecific density-contrast model. We can prove that
�

� z

 2GF�x�z2

�x � xi�2 � z2� �
�

�x

�

2G�x � xi�F�x�z
�x � xi�2 � z2 �

�
2Gh�x�z

�x � xi�2 � z2 . �9�

omparing equation 9 with equation 3, I obtain a 2D vector gravity
otential A as follows:

�Ax � 2G
F�x�z2

�x � xi�2 � z2

Az � � 2G
�x � xi�F�x�z
�x � xi�2 � z2

 . �10�

nserting equation 10 in equation 4, the gravity anomaly becomes

gz�xi,0� � 2G��
C
� F�x�z2

�x � xi�2 � z2dx �
�x � xi�F�x�z
�x � xi�2 � z2dz� .

�11�

quation 11 is called an LI with algebraic kernel for the horizontal
ensity-contrast model.

GENERAL LIs

Now let me consider the general density-contrast model �equation
�. The first term in equation 1 is for the horizontal density-contrast
odel, the LIs of which have been obtained in the above section. The

econd term is for the depth-dependent model, the LIs of which are
tudied systematically by Zhou �2008�. The only LIs that need to be
ound are for the crossterms. Consider the general crossterm

jk� j�x�� k�z�, where � j�x� is any function of x and � k�z� is any func-
ion of z. We define the integrals for � j�x� and � k�z� as follows:

�j�x,z� �� � j�x�
�x � xi�2 � z2dx , �12�

� k�x,z� �� z� k�z�
�x � xi�2 � z2dz . �13�

he 2D vector gravity potential corresponding to the general cross-
erm Djk� j�x�� k�z� is denoted as A jk, satisfying

igure 1. The 2D cross section of a sedimentary basin, where w is the
idth of the basin.
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I4 Zhou
�Ajk,x

� z
�

�Ajk,z

�x
�

2GDjk� j�x�z� k�z�
�x � xi�2 � z2 . �14�

f the integration in equation 13 is easier to perform than that in equa-
ion 13, I choose A jk as follows:

�Ajk,x � 0

Ajk,z � � 2GDjk�j�x,z�z� k�z� � . �15�

therwise, I choose A jk as

�Ajk,x � 2GDjk� j�x�� k�x,z�
Ajk,z � 0

� . �16�

By the superposition principle, for the general density-contrast
odel, the total 2D vector gravity potential is the vector addition of

he depth-dependent term �Zhou, 2008�, the horizontal term �equa-
ion 5�, and the crossterms �equation 15�, i.e.,

�
Ax � Gh�x�ln��x � xi�2 � z2�

Az � � 2G
v�z�arctan� x � xi

z
��


 � �
j�1

Nx

�
k�1

Ny

Djk�j�x,z�z� k�z�� .  �17�

nserting equation 17 in equation 4, the gravity anomaly becomes

gz�xi,0� � G��
C

h�x�ln��x � xi�2 � z2�dx

� 2G��
C

v�z�arctan� x � xi

z
�

� �
j�1

Nx

�
k�1

Ny

Djk�j�x,z�z� k�z��dz . �18�

f � j�x,z� is easier to obtain than �j�x,z�, the counterpart of equation
7 is

gz�xi,0� � G��
C
�h�x�ln��x � xi�2 � z2�

� 2 �
j�1

Nx

�
k�1

Ny

Djk� j�x�� k�x,z��dx

� 2G��
C

v�z�arctan� x � xi

z
��dz . �19�

Here, the 2D vector gravity potential �equation 17� is based on the
riterion that the number of integrals contained in the LIs must be at a
inimum to save computation time. This means that �1� for the den-

ity-contrast component v�z�, which depends on depth, the arctan-
ent function �Zhou, 2008� is chosen; �2� for the density-contrast
omponent h�x�, which depends only on horizontal position, the log-
rithmic function �equation 4� is chosen; and �3� for the crossterms

jk� j�x�� k�z�, which depend on horizontal and vertical positions, the
D vector gravity potential associated with �j�x,z� �equation 15� or
hat associated with � �x,z� �equation 16� is chosen. Therefore,
k
quations 18 and 19 are called general LIs for the general density-
ontrast model �equation 1�. The general LIs �equations 18 and 19�
nclude an LI with arctangent kernel and equation 6 as special cases
hen the general density-contrast model degenerates to the vertical

nd horizontal models, respectively.
Further analytical �closed-form� solution or numerical calculation

f gravity anomaly is then based on the LIs, depending on the exact
orm of the density-contrast function. If the density-contrast func-
ion is a simple function such as a polynomial function, an analytical
olution is possible �Zhang et al., 2001�; otherwise, a numerical so-
ution must be found.

APPLICATION OF GENERAL LIs

For numerical calculations, the contour of a 2D mass body is usu-
lly modeled as a polygon, with each segment or side of the polygon
eing a line segment unless the exact form of the contour equation is
nown. The number of vertices or segments of the contour bounding
he mass is assumed to be M �in Figure 1, M�6�. The nth segment is
ormed from points �xn,zn� and �xn�1,zn�1� in counterclockwise or-
er, the line equation of which is given in parametric form as �Zhou,
008�

x � xn�1 � t� � xn�1t, z � zn�1 � t� � zn�1t �20�

nd

dx � �xn�1 � xn�dt, dz � �zn�1 � zn�dt , �21�

here t is a parameter between 0 and 1. This parameterized form for
he mass boundary has the added advantage that the interval �0,1�
or t is adapted easily for Gaussian quadrature. Thus, equation 18
ecomes

gz�xi,0� � G �
n�1

M �
xn

xn�1

h�x�ln��x � xi�2 � z2�dx

� 2G �
n�1

M �
zn

zn�1 
v�z�arctan� x � xi

z
�

� �
j�1

Nx

�
k�1

Ny

Djk�j�x�z� k�z��dz . �22�

or the numerical integration of each segment, the Gauss-Legendre
uadrature method �Zhou et al., 2003� is used to conduct the integra-
ions in equation 22. Because the abscissas and weights of the
-point Gauss-Legendre quadrature formula are based on the inter-
al ��1,1�, the actual integration interval for each segment of the po-
ygonal cross section is transformed into the ��1,1� range �Davis
nd Rabinowitz, 1984�.

In principle, the LIs of equations 18 and 19 apply to any 2D mass
roblems with any density-contrast function that can be expressed in
he form of equation 1. In the following discussion, some complicat-
d density-contrast model functions are used to show that the LI
ethod can handle not only complex geometry with simple 2D den-

ity-contrast functions but also with sophisticated 2D density-con-
rast models.
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General line integrals for 2D masses I5
ase studies with density contrast varying with
orizontal position
For the problems with a density contrast depending only on the

orizontal position, the gravity anomaly is calculated using the LI
ith logarithmic kernel �equation 6� or the LI with algebraic kernel

equation 11�.
Figure 2a shows the geometry of a mass body with density con-

rast dependent only on horizontal position x as follows �Martín-
tienza and García-Abdeslem, 1999�:

�� � h�x� � 0.5 � 2 � 10�5x � 2 � 10�8x2, �23�

here ���h�x� is in grams per cubic centimeter and x is in meters.
igure 2b shows the gravity anomaly. The number of nodes for
aussian quadrature is k � 20. The results calculated at 41 stations
sing equation 22 agree well with those by Martín-Atienza and
arcía-Abdeslem �1999�. The analytic and numerical methods as
escribed by Martín-Atienza and García-Abdeslem �1999� require
he top and bottom surfaces of the contour of the mass body to be par-
llel to the x-axis, or the left and right surfaces to be parallel to the
-axis. The LI method �equation 18 and 19� does not require any spe-
ial requirement of the geometry of the mass body. Compared with
he case shown in Figure 2, Figure 3a shows the geometry of a more
omplicated irregular mass body with the density contrast depen-
ent only on the horizontal position x but in a more sophisticated
ay as follows:

�� � h�x� � 0.7 � 1.2e��0.001x�5� � 30
x

x2 � 1000
.

�24�

)

)

igure 2. �a� Simple geometry of a 2D mass body with density con-
rast dependent only on the horizontal position x: �� � h�x� � 0.5

2�10�5x � 2�10�8x2. �b� Gravity anomaly calculated using
he LI with logarithmic kernel. The results by Martín-Atienza and
arcía-Abdeslem �1999� also are shown for comparison.
The contour of the mass body is approximated as a 90-segment
olygon, in which case 90 segments are chosen so that no segment is
onger than 1 km and average segment length is 350 m. The gravity
nomalies at 49 stations are calculated. Figure 3b shows the gravity
nomaly and the x-distribution of density contrast. This example
emonstrates the capability of the LIs �equation 18 and 19� in han-
ling any irregular mass body and complicated dependence of the
ensity contrast on the horizontal position. From Figure 3b, we can
ee that the position of maximum gravity anomaly does not coincide
ith that of the peak density contrast, indicating the asymmetry of

he mass source.

ase studies with density contrast varying in horizontal
nd vertical directions

For the problems with density contrast varying with horizontal
nd vertical positions, the gravity anomaly is calculated using the
eneral LIs �equation 18 and 19�. Figure 4a shows the geometry of
he irregular mass body studied by Martín-Atienza and García-Ab-
eslem �1999�, representing folded and overturned strata in a sedi-
entary basin. The density contrast varies in horizontal and vertical

irections:

���x,z� � �0.7 � 5 � 10�8xz � 4 � 10�8x2

� 6 � 10�8z2. �25�

he main difference between this density-contrast model and that in
igure 3 is the crossterm. Set h�x��4�10�8x2, v�z���0.7 � 6
10�8z2, Nx � Nz � 1, D11 � �5�10�8, � 1�x� � x, and � 1�z�
z. The value �1�x,z� is found from equation 12 as �1�x,z�
�1/2�ln��x � xi�2 � z2� � �xi/z�tan�1��x � xi�/z�. The boundary

)

)

igure 3. �a� Geometry of a 2D irregular mass body with density con-
rast dependent only on horizontal position x: �� � h�x� � 0.7

1.2e��0.001x�5� � 30�x/x2 � 1000�. �b� Gravity anomaly calculat-
d using the LI with a logarithmic kernel.
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I6 Zhou
f the 2D mass is approximated as a 26-segment polygon. Figure 4b
hows the gravity anomalies at 41 stations calculated using equation
1. For comparison, the results by Martín-Atienza and García-Ab-
eslem �1999� also are shown. The results using the general LI meth-
d agree very well with those by Martín-Atienza and García-Ab-
eslem �1999�.

Figure 5a shows the geometry of an exhumed sedimentary basin
ith a distorted top surface. No single-value functions can be used to
escribe the boundary. The mass density contrast is

���x,z� � �0.77 � 0.46 cos�0.0003x � 1.5�

� 1.1e�5.1�10�4z

� 1090e�1.2�10�4x z

z2 � 2 � 106 , �26�

here z is in meters. Set h�x��0.46cos�0.0003x�1.5�,
�z� � �0.77 � 1.1e�5.1�10�4z, Nx�Nz � 1, D11 � 1090, � 1�x�

e�1.2�10�4x, and � 1�z� � z/�z2 � 2�106�. For this case, finding
1�x,z� from equation 13 is easier than finding �1�x,z� from equa-

ion 12:

� 1�x,z� �
1

�x � xi�2 � 2 � 106��x � xi�arctan� z

�x � xi�
�

� �2 � 103 arctan� z
�2 � 103�� . �27�

hus, the LI of equation 19 is used to find the gravity anomaly. The
ontour of the 2D mass body is approximated as a 109-segment
olygon.

Figure 5b shows the gravity anomalies at 49 stations calculated
sing equation 18 and the x-profile of density contrast at a depth z

3 km. This example demonstrates the capability of the general
Is �equation 18 and 19� in calculating gravity anomaly because of
ny irregular mass body and the sophisticated dependence of the
ensity contrast on horizontal and vertical positions. The advantage
f using the general LIs is that no restriction on the irregularity is im-
osed.

CONCLUSIONS

Based on the concept of a 2D vector gravity potential, LIs with a
ogarithmic kernel and LIs with an algebraic kernel for density con-
rast dependent only on horizontal position are obtained. A general
ensity-contrast model that depends on horizontal and vertical di-
ections has been developed. General LIs are thus based on the gen-
ral density-contrast model and the proper selection of 2D vector
ravity potentials. The general LIs degenerate to the LIs with a loga-
ithmic kernel �horizontal� and the LIs with an arctangent kernel
vertical� when the general density-contrast model degenerates to
he horizontal and vertical models, respectively. Comparison of the
ravity anomaly calculated using the general LIs with other methods
ndicates the general LIs work excellently. Besides, the new LI

ethod allows for more general 2D density-contrast variations.
The general LI method works very well for an irregular mass body

hat can be approximated as a polygon with any density-contrast
unction in which all crossterms can be expressed as products of ba-
ic mathematical functions of x and z. Otherwise, the general LI al-
orithm does not work. For instance, if the density-contrast function
igure 4. �a� Geometry of a 2D mass body with density contrast de-
endent on horizontal and vertical positions: ���x,z� � �0.7 � 5
10�8xz � 4�10�8x2 � 6�10�8z2. �b� Gravity anomaly calcu-

ated using the general LI equation 18. Results by Martín-Atienza
)

)

igure 5. �a� The 2D cross section of an exhumed sedimentary
asin with a distorted top surface. The density contrast varies
ith horizontal and vertical positions in a sophisticated way:
��x,z� � �0.77 � 0.46 cos �0.0003x � 1.5� � 1.1e�5.1�10�4z

1090e�1.2�10�4x�z/�z2 � 2�106��. �b� The gravity anomaly cal-
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General line integrals for 2D masses I7
ncludes any crossterm such as sin�xz� or cos�xz�, the LI method will
ot work. This is because sin�xz� or cos�xz� cannot be separated into
roducts of basic trigonometry functions of x and z so that the densi-
y-contrast function can be cast into the form of equation 1. If the
ensity contrast depends only on one dimension, either x or z, the LI
lgorithm works very well for any form of the 1D density-contrast
unction.

The 2D vector gravity potential is useful in finding LI for calculat-
ng the gravity anomaly of a 2D mass body of irregular geometry and
ith density contrast varying either in horizontal, vertical, or hori-

ontal and vertical directions. In addition, the general LIs developed
rovide an efficient algorithm for fast computation of gravity anom-
ly because of any 2D mass body with any density-contrast function
hat can be cast into the form of the general density-contrast model.
hus, the LI method is very useful in gravity anomaly modeling and

nterpretation for a broad range of geologic settings.
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