Discussion and Reply

Discussion on "Gravity anomalies of 2D bodies with variable density contrast" (Jianzhong Zhang, Benshan Zhong, Xixiang Zhou, and Yun Dai, 2001, GEOPHYSICS, 66, 809-813).

Discussion by Xiaobing Zhou ${ }^{1}$

In "Gravity anomalies of 2D bodies with variable density contrast," Zhang et al. derive a set of equations (9 and 10 in their paper) for a gravity anomaly at the origin of the coordinate system (x, z) for a polygon mass body when the density contrast is a polynomial function of x and z. For convenience of discussion, I reproduce and renumber their equations 9 and 10 as, respectively,

$$
\begin{equation*}
\Delta g(0,0)=-2 G \sum_{i=0}^{N_{x}} \sum_{j=0}^{N_{z}} \frac{a_{i j}}{i+j+1} \sum_{k=1}^{N_{e}} E(i, j, k) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
E(i, j, k)=\int_{e_{k}} \frac{x^{i+1} z^{j+1}}{x^{2}+z^{2}} d z-\int_{e_{k}} \frac{x^{i} z^{j+2}}{x^{2}+z^{2}} d x \tag{2}
\end{equation*}
$$

Calculation of the $E(i, j, k)$ function depends on whether the k th segment of the polygon is parallel to the z-axis. Then they try to get an analytical solution (closed form - equations 18 and 25). The case $q=0$ is missed in the derivation of equations 19-22 in their paper, and equation 19 for I_{0} is incorrect. In the derivation of their equation 25 , the case that $j=0$ was missed.

Therefore, their closed-form equations do not apply to any densi-ty-contrast model that has terms containing only x.

In the following discussion, I provide the corrected analytical solution (closed form) at the origin of the coordinate system for the gravity anomaly calculation for 2D mass bodies. The density contrast is a polynomial function in x and z. For convenience of comparison, all notations are the same as in their paper.

When the k th segment is not parallel to the z-axis, inserting their equations 11 and 12 in equation 2 and coalescing the two integrals into one, it yields

$$
\begin{equation*}
E(i, j, k)=-\sum_{l=0}^{j+1} C_{j+1}^{l} p^{j-l+1} q^{l+1} I_{i+j-l+1} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=\int_{x_{k}}^{x_{k+1}} \frac{x^{n}}{c x^{2}+b x+a} d x \tag{4}
\end{equation*}
$$

$$
\text { Here, } a=q^{2}, b=2 p q \text {, and } c=1+p^{2} \text {. }
$$

For $Q=4 a c-b^{2}=4 q^{2} \geq 0$, two cases must be considered. The first case is $Q=0$, i.e., $q=0$. If $q=0$, equation 3 becomes

$$
\begin{equation*}
E(i, j, k)=0 \tag{5}
\end{equation*}
$$

which holds for any $i \in\left[0, N_{x}\right], j \in\left[0, N_{z}\right]$, where N_{x} and N_{z} are 39 given in their equation 1 .
The case for $q=0$ is missing in the derivation of equations 19-22 in their paper. For instance, consider the contribution of the first term of the density-contrast model in their equation 1 . For this case, i $=0, j=0$. From their equation 18 and for any k, I obtain $E(0,0, k) \neq 0$. This means that q is not a multiplying factor and $E(i, j, k)=0$ cannot be derived from their equation 18 for all combinations of valid values of i and j. Consequently, when $q=0$, the error caused by $E(0,0, k) \neq 0$ would propagate into the final results if their equation 18 were used. 40 41 42 4344454647

The second case is $Q>0$. The integral in equation 4 is recursive 50 because50

$$
\begin{equation*}
\int \frac{x^{n}}{a+b x+c x^{2}} d x=\frac{x^{n-1}}{(n-1) c}-\frac{b}{c} \int \frac{x^{n-1}}{a+b x+c x^{2}} d x \tag{52}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{a}{c} \int \frac{x^{n-2}}{a+b x+c x^{2}} d x \tag{53}
\end{equation*}
$$

(Beyer, 1984). The series of the recursive integrals is given as

$$
\begin{align*}
I_{0}= & \frac{1}{|q|}\left(\tan ^{-1} \frac{\left(1+p^{2}\right) x_{k+1}+p q}{|q|}\right. \\
& \left.-\tan ^{-1} \frac{\left(1+p^{2}\right) x_{k}+p q}{|q|}\right) \tag{6}
\end{align*}
$$

[^0]
PROOF COPY [2008-0389] 006904GPY

$$
\begin{align*}
& I_{1}=\frac{1}{\left(1+p^{2}\right)} \ln \frac{r_{k+1}}{r_{k}}-\frac{p q}{1+p^{2}} I_{0} \tag{7}\\
& I_{n}= \frac{1}{(n-1)\left(1+p^{2}\right)}\left(x_{k+1}^{n-1}-x_{k}^{n-1}\right)-\frac{2 p q}{1+p^{2}} I_{n-1} \\
&-\frac{q^{2}}{1+p^{2}} I_{n-2}, \quad(n>1) . \tag{8}
\end{align*}
$$

The values I_{1} and I_{n} are the same as equations 20 and 22 of Zhang et al. (2001), but I_{0} given by equation 6 is the corrected equation for their equation 19:

$$
\begin{aligned}
E(i, 0, k)= & x_{k}^{i+1}\left(\ln z_{k+1}-\ln z_{k}\right)-\frac{x_{k}^{i-1}}{2}\left(z_{k+1}^{2}-z_{k}^{2}\right) \\
& +x_{k}^{i+1} \ln \left(\frac{r_{k+1}}{r_{k}}\right)
\end{aligned}
$$

where l'Hôpital's rule is used to find the right-hand side of the equation when $j \rightarrow 0$. From the following discussion (equations 9 and $11)$, when $j=0, E(i, 0, k)$ should be $x_{k}^{i+1} \ln \left(r_{k+1} / r_{k}\right)$. The consequence of missing the case $j=0$ is that their equations $25-27$ do not apply to any density-contrast model that includes any term containing only x.

When the k th segment is parallel to the z-axis, the $E(i, j, k)$ function is given by their equation 23 :

$$
\begin{equation*}
E(i, j, k)=x_{k}^{i+1} K_{j+1} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{n}=\int_{z_{k}}^{z_{k+1}} \frac{z^{n}}{x_{k}^{2}+z^{2}} d z \tag{10}
\end{equation*}
$$

For $j=0, n=1$,

$$
\begin{equation*}
K_{1}=\int_{z_{k}}^{z_{k+1}} \frac{z}{x_{k}^{2}+z^{2}} d z=\ln \left(\frac{r_{k+1}}{r_{k}}\right) \tag{11}
\end{equation*}
$$

For $j=1, n=2$,
$K_{2}=\int_{z_{k}}^{z_{k+1}} \frac{z^{2}}{x_{k}^{2}+z^{2}} d z=\left(z_{k+1}-z_{k}\right)-\left|x_{k}\right|\left(\tan ^{-1}\left(\frac{z_{k+1}}{\left|x_{k}\right|}\right)\right.$

$$
\begin{equation*}
\left.-\tan ^{-1}\left(\frac{z_{k}}{\left|x_{k}\right|}\right)\right) \tag{12}
\end{equation*}
$$

Using their equation 24 for $n>2$, the recursive integral equation 10 becomes

$$
\begin{equation*}
K_{n}=\frac{1}{n-1}\left(z_{k+1}^{n-1}-z_{k}^{n-1}\right)-x_{k}^{2} K_{n-2}, \quad(n>2) \tag{13}
\end{equation*}
$$

Now, equations $1,3,5-9$, and $11-13$ form a complete set of analytical equations that can be used to calculate the gravity anomaly caused by a mass polygon at the origin of the coordinate system. The density contrast of the mass polygon satisfies the polynomial model $\sigma(x, z)=\sum_{i=0}^{N_{x}} \sum_{j=0}^{N_{z}} a_{i j} x^{i} z^{j}$, where constants $a_{i j}$ are the coefficients of the polynomial.

REFERENCES

Beyer, W. H., 1984, CRC Standard Mathematical Tables, 27th ed.: CRC Press, Inc., 244-245.
Zhang, J., B. Zhong, X. Zhou, and Y. Dai, 2001, Gravity anomalies of 2-D bodies with variable density contrast: Geophysics, 66, 809-813.

[^0]: Manuscript received by the Editor 18 November 2008; revised manuscript received xx December xxxx.
 ${ }^{1}$ Department of Geophysical Engineering, Montana Tech of the University of Montana, Butte, Montana, U.S.A. E-mail: xzhou@ mtech.edu © 2009 Society of Exploration Geophysicists. All rights reserved.

