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D vector gravity potential and line integrals for the gravity anomaly
f a rectangular prism with 3D variable density contrast
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ABSTRACT

Three-dimensional rectangular prisms are building blocks
for calculating gravity anomalies from irregular 3D mass
bodies with spatially variable density contrasts. A 3D vector
gravity potential is defined for a 3D rectangular prism with
density contrast varying in depth and horizontally. The verti-
cal component of the gravity anomaly equals the flux of the
3D vector gravity potential through the enclosed surface of
the prism. Thus, the 3D integral for the gravity anomaly is re-
duced to a 2D surface integral. In turn, a 2D vector gravity po-
tential is defined. The vertical component of the gravity
anomaly equals the net circulation of the 2D vector gravity
potential along the enclosed contour bounding the surfaces of
the prism. The 3D integral for the gravity anomaly is reduced
to 1D line integrals. Further analytical or numerical solutions
can then be obtained from the line integrals, depending on the
forms of the density contrast functions. If an analytical solu-
tion cannot be obtained, the line-integral method is semiana-
lytical, requiring numerical quadratures to be carried out at
the final stages. Singularity and discontinuity exist in the al-
gorithm and the method of exclusive infinitesimal sphere or
circle is effective to remove them. Then the vector-potential
line-integral method can calculate the gravity anomaly re-
sulting from a rectangular prism with density contrast, vary-
ing simply in one direction and sophisticatedly in three direc-
tions. The advantage of the method is that the constraint to the
form of the density contrast is greatly reduced and the numer-
ical calculation for the gravity anomaly is fast.

INTRODUCTION

To calculate the gravity anomaly of an irregular 3D mass body
ith spatially variable density contrast, the mass body usually is ap-
roximated as a collection of vertical 3D rectangular prisms in juxta-
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osition. The gravity anomaly from the whole mass body is an alge-
raic sum of the contributions of all vertical prisms at appropriate
epths and distances from the observation point. This procedure is
idely used in gravity-anomaly forward modeling and inversion

Danes, 1960; Nagy, 1966; René, 1986; Rao et al., 1990; García-Ab-
eslem, 1992; Bear et al., 1995; Barbosa et al., 1999; Silva et al.,
000; Gallardo-Delgado et al., 2003; García-Abdeslem, 2005;
hakravarthi and Sundararajan, 2007� and terrain corrections

Danés, 1982; García-Abdeslem and Martín-Atienza, 2001�. Thus,
ectangular prisms are building blocks for calculating the gravity
nomaly of irregular 3D mass bodies.

For a slim rectangular prism, Danes �1960� obtains an approxi-
ate analytical expression for the gravity anomaly when the density

ontrast is a logarithmic function of depth. For such a model, hori-
ontal dimensions of the prism are constant and negligible compared
o the distance from observation point. For a rectangular prism, a
losed-form equation for the gravity anomaly is derived by Nagy
1966� and Banerjee and Gupta �1977� when the density contrast is a
onstant, by Rao et al. �1990� and Gallardo-Delgado et al. �2003�
hen the density contrast is a quadratic function of depth, and by
arcía-Abdeslem �2005� when the density contrast varies with
epth following a cubic polynomial law. For more complicated
orms of the density contrast function, the numerical method might
eed to be used to calculate the gravity anomaly. Reducing a 3D cal-
ulation to a 1D calculation is efficient and thus important in compli-
ated gravity forward and inverse modeling.

Historically, increase of density and decrease of porosity with
epth is of primary interest because of the mechanical compaction
rising from the overburden and diagenesis resulting in reduced po-
osity and vertically layered structure �Cordell, 1973; Murthy and
ao, 1979; Rao, 1986; Chai and Hinze, 1988; Litinsky, 1989; Guspí,
990; Rao et al., 1990; García-Abdeslem, 1992; Rao et al., 1994; Po-
ánka, 1998; Hansen, 1999; Zhang, et al., 2001; Gallardo-Delgado
t al., 2003; Holstein, 2003; García-Abdeslem, 2005; García-Ab-
eslem et al., 2005; Silva et al., 2006; Chakravarthi and Sundarara-
an, 2007; Chappell and Kusznir, 2008; Zhou, 2008, 2009�. Howev-
r, because of complicated geological and geochemical processes in
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I44 Zhou
he diagenesis of rocks, metamorphism, intrusives, extrusive volca-
ics, and facies changes, the density contrast of earth material can
lso depend arbitrarily on horizontal positions �Martín-Atienza and
arcía-Abdeslem, 1999; Zhang et al., 2001; Zhou, 2009�. For in-

tance, as a sediment ages, organic matter combines with mineral
onstituents largely by physical forces. Changes in the density distri-
ution of sediments can be caused by changes in oxidation or reduc-
ion by the surface charges that bind the components into a compos-
te aggregate �Becking and Moore, 1959�.

Specifically, mechanisms that cause variability in density contrast
nclude dipping layered intrusions �Ruotoistenmäki, 1992�, folded
edimentary formations, exhumation, overpressure, salt that can re-
ult in off-normal compaction curves in sediments, fan development
Cordell, 1979�, nonuniform stratification, physical and chemical
ementation �Vajk, 1956�, and gradual horizontal change in density
etween two rock types caused by metamorphism �Gendzwill, 1970;
an, 1989; Ruotoistenmäki, 1992�. The density contrast of earth ma-

erial also can depend arbitrarily on horizontal position �Martín-
tienza and García-Abdeslem, 1999; Zhang et al., 2001; Zhou,
009�.

Using line integrals is an efficient method to calculate the gravity
nomaly for a given density-contrast model �Talwani et al., 1959;
hou, 2008, 2009�. Hubbert �1948� obtains a line integral for irregu-

ar 2D masses of constant density contrast for calculating the gravity
nomaly. This is the basis for the classic Talwani et al. �1959�
cheme for rapid computation. Murthy and Rao �1979� extend Hub-
ert’s line integral to cases when the mass-density contrast is a func-
ion of depth. Zhou �2008, 2009� studies line integrals systematical-
y for irregular 2D masses by defining a 2D vector gravity potential
nd obtains line integrals when the density contrast is depth-depen-
ent or varies vertically and horizontally.

However, all of these line integrals are for 2D irregular mass bod-
es. My objective is to first define a 3D vector gravity potential and,
ubsequently, 2D vector gravity potentials for a 3D rectangular
rism, with the density contrast dependent on depth or on depth and
orizontal positions. Then, I reduce 3D integrals to 1D line integrals
o calculate the gravity anomaly. Finally, I apply this vector-poten-

O(0,0,0)
P(x0,y0,z0)

x

y

z

Sx1 Sx2

(x1 y1 z1), ,

Sz2

Sz1

Sy1

Sy 2

(x,y,z)

r = r r̂

(x2 y2 z2), ,

igure 1. Drawing demonstrating the gravity anomaly at an observa-
ion point P�x0,y0,z0� resulting from a mass element at source point
x,y,z�.
Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
ial line-integral method to case studies to demonstrate its validity
nd capability when calculating the gravity anomaly from 3D prism
ass bodies with simple to sophisticated forms of density contrast.

3D VECTOR GRAVITY POTENTIAL

Consider the geometry of the rectangular prism in Figure 1. The
rism is bounded by six planar surfaces: Sx1, Sx2; Sy1, Sy2; and Sz1, Sz2.
he direction of each surface normally points outward from the
rism. Therefore, Sx1��Sx1î, Sx2�Sx2î; Sy1��Sy1ĵ, Sy2�Sy2ĵ;
nd Sz1��Sz1k̂, Sz2�Sz2k̂, where î,ĵ,k̂ are unit vectors along the
-, y-, and z-axes, respectively. An infinitesimal mass difference dm

��dV between a 3D mass and its background is at point �x,y,z�,
here ∆� is the density contrast and dV�dxdydz is the infinitesi-
al volume. The observation point is at point P�x0,y0,z0�. From
ewton’s law, the magnitude of attraction on a unit mass at point P

rising from the infinitesimal mass dm at distance r0 is given by

dF�G
dm

r0
2 r̂�G

��dV

r0
2 r̂, �1�

here G is Newton’s gravitational constant, r0 is the distance be-
ween the observation point and the mass source dm���dV, and r̂
s the unit vector in the direction from the observation point to the

ass source. The displacement vector from the observation point to
he mass source is r�r0r̂� �x�x0�î� �y�y0�ĵ� �z�z0�k̂. The
ertical component of the gravity anomaly observed at point

P�x0,y0,z0� is

�gz�x0,y0,z0��G�
V

��dV

r0
2 k̂ · r̂�G�

V

�z�z0���

r0�x,y,z�3 dydxdz,

�2�

ith

r0�x,y,z����x�x0�2� �y�y0�2� �z�z0�2.

The divergence theorem shows that for vector A, the volume inte-
ral of �·A equals the total outward flux of it through the closed sur-
ace bounding the volume:

�
V

� ·AdV��
S

A ·ds, �3�

here ds is an infinitesimal surface area vector, with direction being
ormal to the surface but outward from the volume, and S is the
losed surface bounding the volume. Comparing equation 3 with
quation 2, to convert the volume integral for the gravity anomaly to
surface integral �SI�, we need only find a vector A satisfying

� ·A�
�Ax

�x
�

�Ay

� y
�

�Az

� z
�

G�z�z0���

r0�x,y,z�3 . �4�

hus, the vertical component of the gravity anomaly caused by a 3D
ass body takes the form

�gz�x0,y0,z0���
S

A ·ds . �5�

imilar to defining a 2D vector gravity potential �Zhou, 2008�, we
efine the vector potential A that satisfies equation 4 as a 3D vector
 SEG license or copyright; see Terms of Use at http://segdl.org/
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3D gravity potential and line integrals I45
ravity potential so that the gravity anomaly caused by a 3D mass
quals the total flux of the 3D vector potential through the closed sur-
ace bounding the mass.

Because the divergence of the curl of any vector field is identically
ero, i.e., for any vector field E�x,y,z�, �·�� � E� � 0, we have

� ·A� � · �A� � �E�, �6�

hich means the 3D vector gravity potential defined by equation 4 is
ot unique, but the gravity anomaly calculated by various 3D vector
ravity potentials satisfying equation 4 should be exactly the same,
s determined by equation 5. This nonuniqueness of the 3D vector
ravity potential combined with the uniqueness of the gravity anom-
ly provides many options for gravity-anomaly calculation using
quation 5 by selecting different 3D vector gravity potentials �A� for
ifferent forms of the density-contrast function.

Based on the selected 3D vector gravity potential, the 2D surface
ntegral can be further converted into line integrals �Zhou, 2008,
009�. Therefore, the gravity-anomaly calculation of a 3D mass
ody eventually can be converted into a line-integral calculation.
ompared with the 3D vector gravity potential method here, the cal-
ulation can be simplified greatly by appropriate selection of the 3D
ector gravity potential. This point is elucidated in the following dis-
ussion.

LINE INTEGRALS FOR A RECTANGULAR PRISM
WITH DEPTH-DEPENDENT DENSITY

CONTRAST

For the rectangular prism shown in Figure 1, when the density
ontrast depends only on the depth z, i.e., �� ����z�, we select the
D vector gravity potential satisfying equation 4 as

�Ay �Az�0,

Ax�
G�z�z0��x�x0����z�

r0�x,y,z���y�y0�2� �z�z0�2�
. 	 �7�

t is easy to see that equation 7 satisfies equation 4. Inserting the
bove 3D vector potential �equation 7� in equation 5, the total flux of
he 3D vector gravity potential through the closed surface of the 3D

ass body becomes

�gz�x0,y0,z0�����
Sx1

Ax1dydz���
Sx2

Ax2dydz .

�8�

etting i�1 or 2, then Ax1 and Ax2 in equation 8 satisfy

Axi�
G�z�z0��xi�x0����z�

r0�x,y,z���y�y0�2� �z�z0�2�
. �9�

e convert the areal integrals in equation 8 to line integrals accord-
ng to Stokes’theorem. Let’s consider

Ii���
Sxi

Axi�y,z�dydz . �10�

urface Sxi is the vertical cross section of constant x �Sx1 or Sx2�, as
hown in Figure 2a for the rectangular prism. We define the 2D vec-
or gravity potential B satisfying
i

Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
Ii��
S

�� �Bi� ·ds���
S


 �Biz

� y
�

�Biy

� z
�dydz�

�
.

C1

�Biydy�Bizdz�, �11�

here ds is an infinitesimal area element in Sx2, the direction of
hich points to the x-axis � î�, and C1 is the contour of the parallelo-
ram shown in Figure 2a. The line integral is counterclockwise
long the contour, so the direction of ds and that of integration along
he contour C1 satisfy the right-hand rule.

The 2D vector gravity potential Bi that satisfies equation 10 is
hosen as follows:

�Biy �0,

Biz��Axi�y,z�dy�G�xi�x0��z�z0����z�Iiz, 	
�12�

here

Iiz�� dy

r0�x,y,z���y�y0�2� �z�z0�2�
.

ccording to Banerjee and Gupta �1977�, Iiz takes the following
orm:

Iiz�
1

�xi�x0��z�z0�
tan�1
 �xi�x0��y�y0�

�z�z0�r0�x,y,z� � .

�13�

herefore, the vertical component of the gravity anomaly �equation
� becomes

�gz�x0,y0,z0���G
.

C1

���z��
�tan�1
 �x�x0��y�y0�

�z�z0�r0�x,y,z����x1

x2

dz,

�14�

here � f�x��x1

x2� f�x2�� f�x1� is implied. Equation 14 is the line in-

a) b)

igure 2. �a� Cross section of the rectangular prism projected onto a
y-z-plane; C1 is the closed contour bounding the cross section. �b�

ross section of the rectangular prism projected onto an x-y-plane;
is the closed contour bounding the cross section.
2
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I46 Zhou
egral for the 3D rectangular prism with an arbitrarily depth-depen-
ent density contrast. The gravity anomaly from a 3D rectangular
rism becomes a line integral with an arctangent kernel.

Because the contour consists of four line segments �Figure 2a�, dz
0 for the top and bottom segments. Combining the integrals for all

egments, we have

�gz�x0,y0,z0��G�
z1

z2

���z�

���tan�1
 �x�x0��y�y0�
�z�z0�r0�x,y,z���x1

x2�
y1

y2�dz,

�15�

here � � f�x,y��x1

x2�y1

y2� f�x2,y2�� f�x1,y1�� f�x2,y1�� f�x1,y2� is im-
lied. It reduces to the formula obtained by Garcia-Abdeslem �1992�
hen x0�y0�z0�0. This derivation demonstrates that through

ppropriate selection of 3D and 2D vector gravity potentials, the vol-
me integral for the gravity anomaly from a 3D mass can effectively
e reduced to a line integral, making computation more efficient.

INE INTEGRALS FOR A RECTANGULAR PRISM
WITH HORIZONTALLY DEPENDENT

DENSITY CONTRAST

Now consider that the density contrast depends horizontally on x
nd y, i.e., �� ����x,y�. It can be verified that

�

� z
G���x,y�

r0�x,y,z� ���
G�z�z0����x,y�

r0�x,y,z�3 .

herefore, we can select the 3D vector potential that satisfies equa-
ion 4 as follows:

�Ax�Ay �0,

Az��
G���x,y�
r0�x,y,z�

. 	 �16�

nserting the 3D vector potential in equation 5, the total flux of the
D vector gravity potential through the surface of the 3D mass body
ecomes

�gz�x0,y0,z0�����
Sz1

Az1dxdy���
Sz2

Az2dxdy

����
Sz

�G���x,y�
r0�x,y,z�

�
z1

z2

dxdy, �17�

here Sz is the horizontal cross section of the prism, as shown in Fig-
re 2b. Now we convert the areal integrals in equation 17 to line inte-
rals following Zhou �2008�. Consider the following model for the
orizontally dependent density contrast to accommodate a broad va-
iety of geologic formations, similar to the density-contrast model in
2D case �Zhou, 2009�:

���x,y����x����y�� �
��1

Nx

�
m�1

Ny

� l�x��m�y� . �18�
Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
he first and second terms in this density-model equation describe
omponents of the density contrast that depend only on the x- and y-
irections, respectively. The third term describes a sum of cross
erms of the density contrast that depends on both x and y positions.
ndex ��1,2, . . . ,Nx and m�1,2, . . . ,Ny. The number of functions
hat depend only on x and y are Nx and Ny, respectively; ��x� and

l�x� are any function of x, and ��y� and �m�y� are any functions of
y. The vertical component of the gravity anomaly caused by the 3D

ass becomes �Zhou, 2008�

�gz�x0,y0,z0���
.

C2

�Bxdx�Bydy�, �19�

ith the 2D vector potential B satisfying

�By

�x
�

�Bx

� y
���

G���x,y�
r0�x,y,z�

�
z1

z2

. �20�

quation 19 means that the gravity anomaly caused by a 3D mass is
ventually equal to the net circulation of B, counterclockwise along
he closed contour C2 of the horizontal cross section of the 3D mass,
s shown in Figure 2b.

orizontal density-contrast functions — Line integrals
ith a logarithmic kernel

Let us now consider cases in which the horizontally dependent
ensity-contrast model is only a function of x: �� ���x�. From
quation 20, the 2D vector gravity potential B1 satisfies

�B1y

�x
�

�B1x

� y
���

G��x�
r0�x,y,z�

�
z1

z2

. �21�

y the nonuniqueness of the vector gravity potential, B1 can be cho-
en as

�B1x� �G��x�ln��y�y0��r0�x,y,z���z1

z2

B1y �0.
� �22�

nserting equation 22 in equation 19, the vertical component of the
ravity anomaly becomes

�gz�x0,y0,z0���G
.

C2

���x�ln��y�y0��r0�x,y,z���z1

z2dx .

�23�

quation 23 is a line integral with a logarithmic kernel for density
ontrast varying with horizontal position because it contains a loga-
ithmic function in its integrand that is independent of the density
unction. Equation 23 shows that the gravity anomaly from a 3D
ectangular prism with �� ���x� becomes a line integral with a log-
rithmic kernel.

Because the contour for the line integral in equation 23 consists of
our line segments �Figure 2b�, dx�0 for the two vertical segments.
onsidering that integration along the contour is clockwise and
ombining the integrals for the top and bottom segments, it yields

�gz�x0,y0,z0���G�
x1

x2

����x�ln��y�y0�

�r0�x,y,z���z1

z2�y1

y2dx . �24�
 SEG license or copyright; see Terms of Use at http://segdl.org/
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3D gravity potential and line integrals I47
Consider the cases in which the horizontally dependent density-
ontrast model is only a function y: �� ���y�. Similarly, the 2D
ector gravity potential B2 is chosen as

�B2x�0,

B2y � ��G��y�ln��x�x0��r0�x,y,z���z1

z2,� �25�

o that the vertical component of the gravity anomaly takes the fol-
owing line integral form:

�gz�x0,y0,z0��G
.

C2

���y�ln��x�x0��r0�x,y,z���z1

z2dy,

�26�

here the contour along which the line integral is performed is the
ame as in equation 23. Considering the contour shown in Figure 2b
nd the integration direction, equation 24 eventually can be reduced
o

�gz�x0,y0,z0���G�
y1

y2

��y�ln���x�x0��r0�x,y,z���z1

z2
x1

x2dy .

�27�

quations 23 and 26 form the line-integral set for the gravity-anoma-
y calculation for a 3D rectangular prism with density contrast de-
ending only on x and y, respectively.

odel for the horizontally dependent density contrast

Now consider the horizontal density model �equation 18�. For the
rst two terms, the corresponding 2D vector gravity potentials B1

nd B2 and the line integrals have been obtained as above. The 2D
ector gravity potential and the line integrals for the third term need
o be found. We define the integrals for � ��x� and �m�y� as

	��x,y,z��� � ��x�
r0�x,y,z�

dx �28�

nd


m�x,y,z��� �m�y�
r0�x,y,z�

dy . �29�

f the 2D vector gravity potential corresponding to the cross term
��x��m�y� is denoted as B3lm from equation 20, it should satisfy

�B3�m,y

�x
�

�B3�m,x

� y
��G�� ��x��m�y�

r0�x,y,z�
�

z1

z2

. �30�

f the integration in equation 28 is easier to perform than in equation
9, B3�m is chosen as

�B3�m,x�0,

B3�m,y ��G�	 l�x,y,z��z1

z2�m�y� .� �31�

therwise, B is chosen as
3�m

Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
�B3�m,x�G� ��x��
m�x,y,z��z1

z2,

B3�m,y �0.
� �32�

y the superposition principle, for the horizontal density-contrast
odel �equation 18�, the 2D vector gravity potential is B�B1�B2

���1
Nx �m�1

Ny B3�m. If �	 ��x,y,z��z1

z2 is easier to obtain than
�
m�x,y,z��z1

z2, then

�Bx� �G��x�ln��y�y0��r0�x,y,z���z1

z2,

By� ��G��y�ln��x�x0��r0�x,y,z���z1

z2�G�
��1

Nx

�
m�1

Ny

�	��x,y,z��z1

z2�m�y� . 	
�33�

nserting equation 33 in equation 19, the vertical component of the
ravity anomaly becomes

�gz�x0,y0,z0���G�
C2

���x�ln��y�y0��r0�x,y,z���z1

z2dx

�G�
C2

����y�ln��x�x0��r0�x,y,z��

� �
��1

Nx

�
m�1

Ny

	 l�x,y,z��m�y���
z1

z2

dy . �34�

f �
m�x,y,z��z1

z2 is easier to obtain than �	 ��x,y,z��z1

z2, the counter-
arts of equations 33 and 34 are, respectively,

�Bx� �G��x�ln��y�y0��r0�x,y,z���z1

z2�G�
��1

Nx

�
m�1

Ny

� l�x��
m�x,y,z��z1

z2,

By� ��G��y�ln��x�x0��r0�x,y,z���z1

z2
	
�35�

nd

�gz�x0,y0,z0���G�
C2

����x�ln��y�y0��r0�x,y,z��

� �
��1

Nx

�
m�1

Ny

� ��x�
m�x,y,z���
z1

z2

dx

�G
.

C2

���y�ln��x�x0��r0�x,y,z���z1

z2dy .

�36�

quations 34 and 36 are called line integrals for the horizontal densi-
y-contrast model �equation 18�. Further analytical �closed-form�
olution or numerical calculation of the gravity anomaly is based on
he line integrals, depending on the exact form of the density-con-
rast function. A 3D rectangular prism with a horizontally varying
ensity contrast also can be converted to a line integral.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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LINE INTEGRALS FOR A RECTANGULAR PRISM
WITH DENSITY CONTRAST VARYING IN

HORIZONTAL AND VERTICAL DIRECTIONS

If the density contrast of the rectangular prism varies vertically
nd horizontally in a way that can be expressed more generally as

���x,y,z��� �z����x����y�� �
��1

Nx

�
m�1

Ny

� ��x��m�y�,

�37�

hen the line integral for the gravity anomaly is the sum of equation
4 and either equation 34 or equation 36 by the superposition princi-
le. Thus, the vertical component of the gravity anomaly from a
rism with a variable density contrast satisfying equation 37 can be
alculated by a line integral as

�gz�x0,y0,z0���G
.

C2

���x�ln��y�y0��r0�x,y,z���z1

z2dx

�G
.

C2

����y�ln��x�x0��r0�x,y,z��

� �
��1

Nx

�
m�1

Ny

	 l�x,y,z��m�y���
z1

z2

dy

�G
.

C1

� �z�

��tan�1
 �x�x0��y�y0�
�z�z0�r0�x,y,z���x1

x2�dz �38�

r

�gz�x0,y0,z0���G
.

C2

����x�ln��y�y0��r0�x,y,z��

� �
��1

Nx

�
m�1

Ny

� ��x�
m�x,y,z���
z1

z2

dx

�G
.

C2

���y�ln��x�x0��r0�x,y,z���z1

z2dy

�G
.

C1

� �z�

��tan�1
 �x�x0��y�y0�
�z�z0�r0�x,y,z���x1

x2�dz . �39�

onsidering contours C1 and C2 as shown in Figure 2, these two line
ntegrals can be simplified to
Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
�gz�x0,y0,z0���G�
x1

x2

����x�ln��y�y0��r0�x,y,z���z1

z2�y1

y2dx

�G�
y1

y2 �����y�ln��x�x0��r0�x,y,z��

� �
��1

Nx

�
m�1

Ny

	 l�x,y,z��m�y���
z1

z2�
x1

x2

dy

�G�
z1

z2

� �z�

���tan�1
 �x�x0��y�y0�
�z�z0�r0�x,y,z���x1

x2�
y1

y2�dz,

�40�

hen �	 ��x,y,z��z1

z2 is easier to obtain than �
m�x,y,z��z1

z2 or

�gz�x0,y0,z0���G�
x1

x2�����x�ln��y�y0��r0�x,y,z��

� �
��1

Nx

�
m�1

Ny

� ��x�
m�x,y,z���
z1

z2�
y1

y2

dx

�G��
y1

y2

���y�ln��x�x0��r0�x,y,z���
z1

z2�x1

x2dy

�G�
z1

z2

� �z���
��tan�1
 �x�x0��y�y0�

�z�z0�r0�x,y,z���x1

x2�
y1

y2�dz

�41�

hen �
m�x,y,z��z1

z2 is easier to obtain. Equations 40 and 41 are line
ntegrals useful for calculating the gravity anomaly when the densi-
y-contrast function satisfies equation 37.

SINGULARITIES AND DISCONTINUITY

Singularities exist in the logarithm and arctangent subfunctions in
quations 40 and 41 when the observation point is placed on any of
he edges of the rectangular prism. If the observation point is outside
he prism or on any of the facets but not on any of the edges of the
ectangular prism, singularities do not exist.

First, let us consider the logarithmic integrals over y in equation
0 or 41. Each integral can be expanded into four integrals. For one
ntegral involving the top surface coordinates �x1,y1,z1�, the integral
s
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�
y1

y2

��y�ln��x1�x0��r0�x1,y,z1��dy

��
y1

y2

��y�ln��x1�x0�

���x1�x0�2� �y�y0�2� �z1�z0�2�dy . �42�

Singularity occurs in equation 42 when �x1�x0��r0�0. For
x1�x0��r0�0, we must have x1 �x0, z1�z0 and y0�y, with y
aking any value between y1 and y2, inclusive �see Figure 1�. This

eans that singularity occurs when the observation point is on the
dge �x�x1, z�z1� parallel to the y-axis and on the surface plane
here z0�z1, y1 �y0 �y2, and x0  x1.
Similar analyses for the other three integrals show that singularity

ccurs when the observation points are on the other three edges of
he prism that are parallel to the y-axis and on the surface plane
here z2�z0, y1 �y0 �y2, and x1 � x0. Therefore, the singular-

ty occurs in the logarithmic integrals ��y1

y2��y�ln���x�x0�
r�x,y,z���z1

z2�x1

x2dy in equation 40 or 41 when the observation point is
n any of the four edges of the prism parallel to the y-axis and on the
op �z1�z0� and bottom �z2�z0� surface planes with y1 �y0 �y2

nd x1 � x0 �Figure 1�.
Similar analyses on the logarithmic integrals over x in equation 40

r 41 lead to the conclusion that singularity occurs in the logarithmic
ntegrals ��x1

x2��x�ln���y�y0��r0�x,y,z���z1

z2�y1

y2dx in equation 40 or
1 when the observation point is on any of the four edges of the prism
hat are parallel to the x-axis and on the top �z1�z0� and bottom �z2

z0� surface planes with x1 �x0 �x2 and y1 � y0 �Figure 1�.
Now, consider the arctangent integral in equation 40 and 41. It still

an be expanded into four integrals. Consider one integral involving
he top surface coordinates �x1,y1,z1�. The integral is

�
z1

z2

� �z�tan�1
 �x1�x0��y1�y0�

�z�z0���x1�x0�2� �y�y0�2� �z�z0�2
�dz .

�43�

ingularity occurs when the argument of the arctangent function be-
omes the indeterminate form 0 /0. For the arctangent argument in
quation 43 to reach this indeterminate form, we must have z0�z
ith z taking any value between z1 and z2 inclusive �see Figure 1� and
ne of the following conditions: �1� x0�x1, �2� y0�y1, or �3� x0

x1, y0�y1. This means that singularity occurs when the observa-
ion point is on the edge �x�x1, y�y1� that is parallel to the z-axis,
n the surface planes of x�x1 and y�y1 with z1 �z�z2. Combin-
ng with similar analyses for the other three integrals, we can con-
lude that for the arctangent integral in equations 40 and 41, singu-
arity occurs when the observation point is on any of the four edges
f the prism that is parallel to the z-axis and on the surface planes x

x1, y�y1, x�x2, and y�y2 with z1 �z�z2.
However, for the arctangent integral in equations 40 and 41, an ad-

itional point needs to be considered. In equations 40 and 41, the
ange of arctangent function is defined within ��� /2,� /2�. For ob-
ervation points that are not on the edge �x�x1, y�y1� that is paral-
el to the z-axis but are between planes z�z1 and z�z2, when the
ine integration path passes through z�z , the integrand has a flip in
0

Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
ign, resulting in discontinuity. This can cause problems when the
ine integral is calculated using a numerical method such as Gauss-
an quadratures. However, the discontinuity can be removed by sep-
rating the integration into two parts from z1 to z0�� and from z0

� to z2, then taking the limit as � →0. In a general way, the discon-
inuity in an arctangent integral can be removed by rewriting the in-
egral as

�
z1

z2

� �z�tan�1
 c

z�z0
�dz

� lim
�→0

�
z1

z0��

� �z�tan�1
 c

z�z0
�

� lim
�→0

�
z0��

z2

� �z�tan�1
 c

z�z0
� .

n numerical computation, � is a small positive number.
In potential theory, the distance between the computation point

nd the source point appears in the denominator of the 3D volume in-
egral of potential. Thus, when the computation point overlaps with
ny point on the surface or inside the 3D source body, singularity oc-
urs. Consider two infinitesimal masses. Even though they touch
ach other, the centers of the masses never overlap. Point mass is
nly a mathematical model; physically, mass without volume does
ot exist. Measurement of gravity is more the case. No matter how
mall a gravimeter is, gravity cannot be measured on the surface of
he source or inside the mass body without drilling a hole.

Removal or avoidance of singularity in calculating potential fields
s discussed by other researchers �e.g., Okabe, 1979; Pohanka, 1988;
soulis and Petrović, 2001; Holstein, 2002; 2003�. Okabe �1979�
roposes a method to avoid singularities in computing gravitational
otential and gravity of homogeneous polyhedral bodies. To remove
umerical singularities in the closed form of a gravity field of a ho-
ogeneous polyhedral body, Pohanka �1988� proposes to insert a

mall positive distance � in the term that involves the singular point.
Tsoulis and Petrović �2001� show that the singularity in the gravi-

y field of a homogeneous polyhedral body can be removed if one
reats the singularities in the usual way of potential field theory, ex-
luding a small sphere or circle around the singular point. Error in
he numerical calculation is lumped into the integral around the
mall number or small sphere or circle. This technique is used not
nly in gravity potential but also in resistivity modeling �Lowry et
l., 1989�.

Holstein �2002, 2003� studies the gravimagnetic anomaly for uni-
orm polyhedra and polyhedra of spatially linear media and shows
hat the singularity involves the product of a small quantity with lim-
t zero and a large quantity with limit infinity but with a limiting
roduct of zero. For such cases, there is no need for an � exclusion
one, although numerical integration still should be carried out in
plit ranges �using a quadrature rule that avoids the end point� be-
ause the integrand derivative is singular. For linear media, all inte-
rations can be carried out analytically �Holstein, 2003�.

Because the singularity for line integrals of equations 40 and 41
ccurs on the edges of the prism and on surface planes of the mass
ody, it can be removed by adding an exclusive infinitesimal sphere
ith a very small radius � centering at each edge or at the singularity
oint to prevent the observation point from being located on the sin-
ularity. If the limit of the argument of the arctangent or logarithmic
 SEG license or copyright; see Terms of Use at http://segdl.org/
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unction that is usually a multivariate function can be found when an
ndeterminate form occurs, then this exclusive infinitesimal sphere

ethod can be avoided completely.
However, the limit of a multivariate function usually is not easy to

nd. The exclusive infinitesimal sphere method is convenient and
ractical for avoiding divergence in numerical computation. To see
he sensitivity of the calculated gravity anomaly to radius � of the ex-
lusive infinitesimal sphere, I consider the same rectangular prism as
n García-Abdeslem �2005�: x1�10 km, x2�20 km; y1�10 km,
2�20 km; and z1�0 km, z2�8 km. I also use the same cubic-
olynomial density-contrast function that fits to density data in
reen Canyon, located offshore Louisiana, U.S.A., in the Gulf of
exico �Li, 2001�:

���z���0.7477�2.03435�10�4z�2.6764�10�8z2

�1.4247�10�12z3, �44�

here density contrast is in grams per cubic centimeter and z is in
eters. Assume we want to calculate the gravity anomaly at point

x0�15 km, y0�10 km, z0�0 km� at one of the edges of the
rism using equation 40 or 41. To remove the singularity, calculation
s performed for the gravity observation point �x0�15 km, y0

10 km, z0����, where � is the radius of the exclusive sphere.
igure 3 shows the difference between the calculated gravity anoma-

y at various � and that which occurs when ��10�20 m at observa-
ion point �x0�15 km, y0�10 km, z0����. If we take z0�

10�20 m to represent the top surface of the prism z0�0 m, the
urve in Figure 3 represents the singular error. If the radius of the ex-
lusive sphere is smaller than 0.18 m, the error will not exceed 1
Gal. For the case ��10�5 m, the error is about 5.86�10�8 mGal.

�
� � � �

igure 3. Difference between the gravity anomaly for various radius
alues of the exclusive infinitesimal sphere � for singularity removal
nd that which occurs when ��10�20 m at point �x0�15 km, y0

10 km, z0���� for a prism determined by x1�10 km, x2

20 km; y1�10 km, y2�20 km; and z1�0 km, z2�8 km. The
ensity contrast is given by equation 44. Taking the plane �

10�20 m to represent the top surface of the prism, the difference
epresents the error arising from singularity removal when the gravi-
y anomaly is supposed to be calculated at the point �x0�15 km, y0

10 km, z �0 km�, which is on one edge of the prism.
0

Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
One more point on singularity and discontinuity needs to be men-
ioned: If the observation point is inside the mass body, the rectangu-
ar prism can be cut into two, four, or eight subprisms so the observa-
ion point remains outside the prisms. Then, the gravity anomaly
rising from the subprisms can be summed up. This is consistent
ith the reality that we cannot measure gravity inside the earth un-

ess we drill a hole.

APPLICATION OF LINE INTEGRALS

The line integrals containing an arctangent kernel �third term� in
quations 40 and 41 can be calculated quickly using the Gauss-Leg-
ndre quadrature method �Zhou, 2008�. However, for the line inte-
rals containing a logarithmic kernel �first and second terms� in
quations 40 and 41. I found that using Romberg’s method �Miller,
970� is faster than the Gauss-Legendre quadrature method.

ase study: Density contrast varies with depth

This study is based on the same case as in Figure 3. To compare the
esults from the present line-integral method with those from the an-
lytical solution derived by García-Abdeslem �2005�, the gravity
nomaly is calculated within the domain of x0 � �0,30� km and y0

�0,30� km with equal intervals of �x0��y0�0.5 km at the
ame plane �z0��0.15 m, corresponding to ��0.15 m� to avoid
ingularity �García-Abdeslem, 2005�. As discussed earlier, ��0.15

can result in an error of about 1 µGal. For a gravimeter with accu-
acy lower than 1 µGal, this choice is reasonable.

Figure 4a shows the gravity-anomaly distribution and contour
ines of the gravity anomaly. Because the density contrast is sym-

etric about the x�15 km and y�15 km axes, the gravity anoma-
y should be symmetric about the same x- and y-axes. This salient
eature is shown clearly in Figure 4a. Figure 4b illustrates the differ-
nce of the calculated gravity anomaly between the line-integral
ethod and the analytical solution. The maximum difference is 1.0
10�6 mGal, which indicates that the line-integral method devel-

ped above agrees very well with the analytical solution.

ase study: Density contrast varying with depth and
orizontal directions

To see the impact of the horizontal variation of density contrast on
he gravity anomaly, let us consider a density transition zone where
he horizontal variation of the density contrast can be approximated
s horizontally linear �Gendzwill, 1970; Pan, 1989�, although the de-
endence on depth takes the same form as equation 44. The density
ontrast for such a case is modeled as

���z���0.7477�2.03435�10�4z�2.6764�10�8z2

�1.4247�10�12z3�2.32�10�5x, �45�

here x is in meters. The gravity anomaly is calculated using equa-
ion 40 on the same surface domain for the same geometry of a prism
s in Figure 4. Figure 5 shows the gravity anomaly distribution. Be-
ause the density contrast decreases with increasing x, the contour
ines cluster toward the right edge of the prism. The density contrast
s symmetrical about the y�15 km axis, but no longer about the x

15,000-m axis; so the gravity anomaly is expected to be symmet-
ical about the same y-axis, but no longer about the x�15,000-m
xis. This expected feature is shown clearly in Figure 5. The differ-
 SEG license or copyright; see Terms of Use at http://segdl.org/
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3D gravity potential and line integrals I51
nce between Figures 5 and 4a is caused by the horizontal compo-
ent in the density-contrast model: �� ��2.32�10�5x.
To demonstrate the capability of the line integrals developed

equations 40 and 41� in calculating the gravity anomaly from a rect-
ngular-prism mass body with a sophisticated dependence of the
ensity contrast on space in all three directions, I consider a more
omplicated case:

���x,y,z���0.623�4.37�10�5z

�
1.38

12.6�2.3�10�8y2 � ��0.28�3.6

�10�5x�� �0.163�6.36�10�5x�cos�3.2

�9�10�4y�, �46�

here ���x,y,z� is in g /cm3, and x, y, and z are in meters. Compar-

)

)

a

y x

High: –0.511

Low: –65.4

igure 4. �a� Surface gravity-anomaly distribution using the line-in-
egral method. The dotted line shows the edges of the top surface of
he rectangular prism. Dimensions of the rectangular prism and the
ensity function are discussed in the text. �b� Differences in the grav-
ty anomalies calculated using the line integral method from those
alculated using the analytical method �García-Abdeslem, 2005� are
xtremely small.
Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
ng equation 46 with equation 37. I have ��x���0.28�3.6
10�5x, ��y��1.38 / �12.6�2.3�10�8y2�, � �z���0.623
4.37�10�5z, Nx�1, Ny �1, �1�y��cos�3.2�9�10�4y�, and

1�x��0.163�6.36�10�5x. Examining equations 28 and 29,

1�x,y,z� is easier to obtain than 
m�x,y,z�. Inserting the expression
or � 1�x� and r0�x,y,z����x�x0�2� �y�y0�2� �z�z0�2 in
quation 28, we have

	1�x,y,z��� 0.163�6.36�10�5x
��x�x0�2� �y�y0�2� �z�z0�2

dx

� �0.163�6.36�10�5x0�ln�x�x0�r0�x,y,z��

�6.36�10�5r0�x,y,z� .

herefore, line-integral equation 40 is used to calculate the gravity
nomaly.

Consider a rectangular prism with �x1,y1,z1�� ��5,�2,0� km,
nd �x2,y2,z2�� �5,2,10� km �see Figure 1�. The gravity anomaly is
alculated on the surface plane with the radius of exclusive infinites-
mal sphere ��0.01 m within the surface domain of x0 � ��6 km,

6 km� and y0 � ��6 km,�6 km� at an interval of 100 m in the

0- and y0-directions. Figure 6a shows the density-contrast distribu-
ion at the surface of the prism �z�z1�0 km� and the contour lines.
he density contrasts increase linearly with depth. The density dis-

ribution pattern in the x-y-plane at any depth is similar to Figure 6a.
urface distribution of the calculated gravity anomaly is shown in
igure 6b, where the contour lines at an interval of 4 mGal are also

Low: –122.769

High: –1.229

igure 5. Surface gravity-anomaly distribution with contours of the
ravity anomaly using the line-integral method. The dotted line
hows the edges of the top surface of the rectangular prism. The den-
ity-contrast function is given by equation 45.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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epicted. Because the density contrast is asymmetric about the x
0 and y�0 planes, the gravity anomaly should be asymmetric

bout the x- and y-axes, as seen in Figure 6b.

CONCLUSIONS

This paper has focused on calculating the gravity anomaly of a 3D
ectangular prism with a 3D variable density contrast because an ir-
egular 3D mass body usually is approximated as a collection of ver-
ical 3D rectangular prisms in juxtaposition. A 3D vector gravity po-
ential is defined from the divergence theorem in vector calculus. As
consequence, the vertical component of the gravity anomaly of a
D mass body is equal to the net flux of the 3D vector gravity poten-
ial through the closed surface bounding the mass.

The nonuniqueness of the 3D vector gravity potential and the
niqueness in the calculated gravity anomaly make it possible to se-
ect a form of the 3D vector gravity potential as simple as possible to
onvert the 3D volume integral to 2D areal integrals. In turn, the 2D
real integral was converted to 1D line integrals through defining a
D vector gravity potential. Similarly, the nonuniqueness of the 2D

)

)

�
�

�

�

Low: –1.16

High: –0.55

High: –7.75

Low: –90.11

igure 6. The dimensions of a rectangular prism are �x1,y1,z1�
��5,�2,0� km and �x2,y2,z2�� �5,2,10� km. The density-con-

rast function is given by equation 46. �a� Horizontal distribution of
he density contrast �in g /cm3� at the top surface of a rectangular
rism �z�z1�0 km� and the contour lines. �b� Surface �x0,y0� dis-
ribution of the gravity anomaly at z0��0.01 m plane. Contours of
he gravity anomaly are shown with an interval of 4.0 mGal. The
hite dotted line shows the edges of the top surface of the prism.
Downloaded 03 Dec 2009 to 150.131.131.207. Redistribution subject to
ector gravity potential and the uniqueness in the calculated gravity
nomaly made it possible to select a form of the 2D vector gravity
otential as simple as possible to convert 2D areal integrals to 1D
ine integrals. Finally, a 3D volume integral for calculating the gravi-
y anomaly was converted to 1D line integrals.

This procedure was performed for a sophisticated density-con-
rast model, depending on all three directions in the Cartesian coor-
inate system. Singularity occurs only when the observation point is
ocated on the edges or surface planes of the prism, and removal was
roposed by imposing an exclusive infinitesimal sphere with small
adius � concentric with the singularity point. To produce a gravity-
nomaly calculation with accuracy greater than 1 µGal, � ≤ 0.1 m
as suggested; but the smaller the �, the higher the accuracy. When a
D volume integral was reduced to a 1D line integral, a volume with
n order of N3 internally discretized elementary grids was expected
o have an order of N boundary elements. The number of integration
teps can be reduced from an order of N3 to an order of N. Savings of
omputation time is significant.

This vector-gravity-potential and line-integral method was ap-
lied to case studies to demonstrate its capability in calculating the
ravity anomaly from a 3D rectangular prism with density contrast
epending simply on one dimension to sophisticatedly on three di-
ections.
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