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Variations in the definition of the Normalized Difference Vegetation Index

(NDVI) and inconsistencies in vegetation areal fraction models prejudice the

understanding of long-term variability and change in land cover. We analysed the

consequences of using NDVI definitions based on the digital number (DN),

spectral radiance and spectral reflectance for six active and high spatial

resolution multi- and hyperspectral satellite sensors (ALI, ASTER, ETM + ,

HRVIR, Hyperion and IKONOS) and optimized the NDVI definitions, and then

examined the performance of three vegetation areal fraction models: the linear

reflectance, linear NDVI and quadratic NDVI models. The examination was

performed for three plots chosen from two biomass zones: a short and small leaf

area index (LAI) creosote shrub zone, and a tall and large-LAI piñon-juniper

zone. The results show that: (1) the difference in NDVI values among the NDVI

definitions is sensor dependent and always significant; spectral reflectance should

be used in NDVI calculations, and using radiance or DN values in calculating the

NDVI should be avoided; (2) in deriving vegetation areal coverage, the linear

reflectance model outperforms the other two models in the shrub biomass zone;

and (3) the linear NDVI model outperforms the other two models in the piñon-

juniper biomass zone. These observations are consistent with the fact that the

non-linear effect is less important in shrubland than in piñon-juniper woodland

and that the linear NDVI model is more capable of capturing non-linearity in the

spectral analysis.

1. Introduction

Vegetation areal coverage is an important parameter in the understanding of long-

term variability and change in land cover. Monitoring regional (or global)

vegetation greenness and coverage is often based on spectral reflectance and the

widely used Normalized Difference Vegetation Index (NDVI), which provides a

measure indicating the vigour of vegetation (e.g. Campbell 1987, Bannari et al. 1995,

Xie et al. 2007), an ecological surrogate measure of the absorbed photosynthetically
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active radiation (APAR) and thus photosynthetic activity in the vegetation (e.g.

Asrar et al. 1984, Daughtry et al. 1992, Myneni et al. 1995), and also the leaf area

index (LAI), which is one of the key inputs in models describing biosphere processes

(Nemani et al. 1993, Running et al. 1999, Chen et al. 2004, Kalácska et al. 2004,

Shabanov et al. 2005, Soudani et al. 2006).

Unfortunately, the definition of the NDVI derived from remotely sensed optical

data in the literature is often not unique (Steven et al. 2003). The NDVI was first

proposed for studying the vernal advancement and retrogradation of vegetation by

Rouse et al. (1973). It was then used to monitor vegetation and detect changes in

regional and global vegetation canopy (Tucker 1979, Justice et al. 1985, Tucker et al.

1985a, Cihlar et al. 1991). In Rouse’s initial definition, the NDVI is calculated using

spectral reflectance. However, the first vegetation indices were developed using raw

satellite digital numbers (DNs) or digital counts, without transformation into

radiance and reflectance, atmospheric corrections, and sensor calibration (Bannari

et al. 1995). Later researchers also used other spectral quantities in the calculation of

the NDVI. Most publications in the remote sensing literature followed Rouse’s

initial definition and the NDVI was computed from spectral reflectances of the near-

infrared (Rnir) and the red (Rr) reflected bands from the surface and transmitted

through the atmosphere (Rouse et al. 1973, Myneni et al. 1995). Using spectral

reflectance to calculate the NDVI, Guyot and Gu (1994) clarified that a radiometric

correction has to be performed. There are also several publications that used

spectral radiance in the calculation of the NDVI (e.g. Oguro et al. 2001, Hunt et al.

2002, Johnson et al. 2003, Lu et al. 2003, Ingram et al. 2005). Some used DN values

directly (e.g. Chrysoulakis 2003, Colombo et al. 2003). Others mentioned that

‘spectral data’ were used but did not specify whether they used spectral reflectance

or spectral radiance data or DN values (e.g. Paruelo and Lauenroth 1995). Realizing

the various definitions of the NDVI using the DN value, spectral radiance and

spectral reflectance, some authors used some or all of these definitions in studies of

multisensor intercomparisons or relationships between vegetation characteristics

and vegetation indices (Vierling et al. 1997, Turner et al. 1999, Gupta et al. 2001,

Thenkabail et al. 2004, Soudani et al. 2006).

Since the NDVI is easier to obtain from remotely sensed data than the vegetation

areal fraction itself, numerous studies have been carried out to establish a

relationship between vegetation areal fraction and the NDVI or spectral reflectance,

resulting in various empirical or semiempirical models. These include the linear

NDVI model (e.g. Wittich and Hansing 1995, Gutman and Ignatov 1998, Leprieur

et al. 2000, Qi et al. 2000, Zeng et al. 2000, Lu et al. 2003), the quadratic NDVI

model (e.g. Choudhury et al. 1994, Carlson and Ripley 1997, Gillies et al. 1997) and

the linear reflectance model (e.g. Smith et al. 1990a,b, Roberts et al. 1993, 1998,

Asner and Heidebrecht 2002). Considering the multiplicity of NDVI definitions,

NDVI-based vegetation areal fraction models (the linear NDVI model and the

quadratic NDVI model) are not uniquely defined.

To reduce the ambiguity in applying the NDVI-based vegetation areal fraction

models, the various definitions of NDVI need to be analysed and optimized so that

other convolving factors can be unfolded. For instance, as these models were derived

either from simplified physical models or from empirical models based on data

collected under specific conditions, use of these models generally results in

inconsistencies in estimating areal coverage of vegetation. Is this inconsistency due

to the multiple definitions of NDVI? By intercomparison of the NDVI values using

722 X. Zhou et al.
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different quantities (DN values, spectral radiance, and spectral reflectance), we have

investigated whether the multiple definitions are consistent with each other and with

the ground truth. Based on the assessment of the multiple definitions of NDVI, we

optimized the NDVI definitions; and based on the optimized NDVI definition,

NDVI-based vegetation areal fraction models were thus defined. Then we identified

which of the vegetation areal fraction models was most consistent with the ground

measurements.

Analysis and optimization of NDVI definitions and vegetation areal fraction

models have to be carried out using remotely sensed data from specific sensors. In this

study, we only focused on the sensors that are currently in operation and have high

spatial resolution (,100 m). These (table 1) include the Advanced Land Imager (ALI)

(NASA 2002, USGS 2006), the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) (Abrams et al. 2002), the Enhanced Thematic

Mapper Plus (ETM + ) onboard Landsat-7 (NASA 2006), Hyperion (USGS 2006),

IKONOS (Dial et al. 2003), and the High-Resolution Visible and Infrared (HRVIR)

detector onboard SPOT (Schroeder et al. 2001). ASTER consists of three different

subsystems but only the three bands of the visible and near-infrared (VNIR)

subsystem with a spatial resolution of 15 m were included. The high spatial resolution

data from these sensors are often used for virtual ground truthing by validating

conclusions derived from the coarser spatial resolution systems (Morisette et al. 2003)

and to monitor changes in land use and land cover (Coca et al. 2004).

2. Variety of NDVI definitions and the consequences

If we accept the three definitions of the NDVI using the DN value, spectral radiance

and spectral reflectance, then the NDVI at each pixel is calculated by the following

equations:

NDVIDN~
DNnirð Þ{ DNrð Þ
DNnirð Þz DNrð Þ ð1Þ

NDVIL~
Lnir{Lr

LnirzLr
ð2Þ

NDVIR~
Rnir{Rr

RnirzRr
ð3Þ

where DN, L and R denote the DN value, spectral radiance and spectral reflectance,

respectively. NDVIDN, NDVIL and NDVIR are the NDVI defined using the DN

value, spectral radiance and spectral reflectance, respectively. The subscript nir

denotes the near-infrared band and r denotes the red band. The NDVI varies within

a bounded range from 21 to 1 but is defined as zero when the values of DN, spectral

radiance or spectral reflectance of the nir and red bands are zero. As the reflected

signal of vegetation usually decreases in the red band due to absorption of solar

energy by chlorophyll and increases in the near-infrared due to strong back-

scattering by the spongy parenchyma’s cell structure (Tucker et al. 1985b,

Buschmann and Nagel 1993), the NDVI is sensitive to the presence of vegetation

and is thus used to indicate vernal advancement and retrogradation of vegetation.

The general procedure to obtain spectral reflectance from the DN or digital

counts consists of two steps. First, the DN value is converted to spectral radiance

NDVI definitions and areal fraction models 723
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Table 1. Sensors studied and lookup table for conversion from DN values to spectral radiance. Subscript i denotes the ith pixel and subscript j denotes the
jth band. CCj is a coefficient of the jth band in equations (T3) and (T6). In equation (T8), CDj is a coefficient and BWj is the bandwidth corresponding to the

jth band.

Sensor
DN to radiance Lij

(W m22 sr21 mm21) DNij Notes

ALI T1: Lij5DNij/30
(before 22 December 2004)

16-bit Band j (mm) Sj OSj

1p (0.433–0.453) 0.45 234
1 (0.450–0.515) 0.43 244
2 (0.425–0.605) 0.28 219
3 (0.633–0.690) 0.18 213

T2: Lij5DNij?Sj + OSj

(on or after 22 December 2004)
4 (0.775–0.805) 0.11 28.5

4p (0.845–0.890) 0.091 26.5
5p (1.200–1.300) 0.083 213

5 (1.550–1.750) 0.028 26
7 (2.080–2.350) 0.0091 22.1

ASTER T3: Lij5(DNij21)/CCj 8-bit Band (mm) CCj (W21 m2 sr mm)

HG mode NG mode LG mode

1 (0.52–0.60) 0.676 1.688 2.25
2 (0.63–0.69) 0.708 1.415 1.89

3* (0.78–0.86) 0.423 0.862 1.15

ETM + T4:

Lij~
Lmax, j{Lmin, j

254
DNij{1
� �

z

Lmin, j

8-bit T4: for LPGS products

T5:

Lij~
Lmax, j{Lmin, j

255
DNijzLmin, j

T5: for NLAPS products
Lmax,j and Lmin,j should be found in the image header file
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Table 1. (Continued.)

Sensor
DN to radiance Lij

(W m22 sr21 mm21) DNij Notes

HRVIR T6: Lij5DNij/CCj 8-bit Band (mm) CCj (W21 m2 sr mm)

1 (0.500–0.590) 1.55678
2 (0.61–0.68) 1.89702
3 (0.78–0.89) 1.27415
4 (1.58–1.75) 9.018

Hyperion T7: Lij5DNij/40 (for VNIR) 16-bit For Hyperion, bands 33 (0.6812 mm) and 45 (0.8033 mm) are used for NDVI calculation
(Pearlman 2003, Asner et al. 2004)

IKONOS T8: Lij5DNij/CDj/BWj 11-bit Band (mm) CDj (W21 m2 sr) BWj (mm)

(before 22 February
2001)

(after 22 February 2001)

1 (0.445–0.516) 63.3 72.8 0.0713
2 (0.506–0.595) 64.9 72.7 0.0886
3 (0.632–0.698) 84.0 94.9 0.0658
4 (0.757–0.853) 74.6 84.3 0.0954

S, scale factor; OS, offset; HG, high gain; NG, normal gain; LG, low gain modes.
* The two bands (3B, backward looking and 3N, nadir looking) of ASTER band 3 have the same characteristics.
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using information on gain and offset. This step is the reverse of digitizing the

analogue signal, representing radiance through instrument calibration. Therefore,

the relationship between the DN value and the spectral radiance is generally given at

the stage of product generation. Table 1 shows these relationships, where Lij is the

spectral radiance (in W m22 sr21 mm21) at the ith pixel for the jth band and BWj is

the band width in units of mm of the jth band. The second step is the conversion of

spectral radiance to spectral reflectance. This is accomplished by using the following

formula (NASA 2006):

Rj~
pLjd

2

Fj cos hs

ð4Þ

where Rj, Lj and Fj are the at-sensor spectral reflectance, the spectral radiance and

the mean solar exoatmospheric spectral irradiance (in W m22 mm21) of the jth band,

respectively. d is the earth–sun distance in astronomic units on the data acquisition

day and hs is the solar zenith angle at the data acquisition time. To obtain a general

conclusion on the consequence of the varieties of NDVI definitions from the

intercomparison for various sensors, we considered the NDVI calculated only at the

level of sensor in the following discussion because atmospheric conditions are time

dependent and unpredictable. In addition, the atmospheric correction for the DN

value is non-physical because the DN value is not a physical quantity. For the

specific case where the atmospheric condition can be quantified, the NDVI at the

ground surface corrected for atmospheric effects should always be pursued (see

section 3.3). Our emphasis below is on the consequence and difference due to the

various definitions of the NDVI and thus the necessity of optimizing the NDVI

definitions for remote sensing of vegetation.

From table 1, we can see that different sensors have different ways of converting

the DN value to spectral radiance. For ALI, conversion to spectral radiance takes

different forms for products before 22 December 2004 compared with those on or

after 22 December 2004. For ETM + of Landsat 7, equation (T4) is for the Level 1

Product Generation System (LPGS) products ordered from the Earth Observation

System (EOS) Data Gateway and National Land Archive Production System

(NLAPS) products after 5 April 2004 ordered from Earth Explorer; equation (T5) is

for the NLAPS products before 5 April 2004. Lmax,j and Lmin,j are, respectively, the

maximum and minimum spectral radiances corresponding to the jth band, which

should be found in the image header file accompanying the science data ordered.

Table 2 shows the relationships between NDVIL and DN values. The bounded

range for NDVIDN is still between 21 and 1, but the NDVIL derived from the DN

values can now be .1 or ,21. For instance, for ALI data collected on or after 22

December 2004, for DNnir g [0, 195] and DNr g [0, 120] (along the line

0.61111DNnir + DNr2119.4450, see table 2 for ALI), NDVIL varies between

220 169 and 30 764. Here DNnir g [0, 195] denotes any DN value of the near-

infrared band in the range between 0 and 195, and DNr g [0, 120] denotes any DN

value of the red band in the range between 0 and 120. For the 16-bit integer DN

values of ALI, the area with DNnir g [0, 195] and DNr g [0, 120] corresponds to

very dark targets such as dark soils (Huete and Tucker 1991), ocean and dark forest

targets (Roderick et al. 1996). As pointed out by Roderick et al. (1996), NDVI

values over darker targets are expected to be more sensitive to signal quantization

and system noise. Therefore, it is difficult to use the NDVIL in areas where both

DNnir and DNr are too small to differentiate the types of land surface. The area

726 X. Zhou et al.
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Table 2. Lookup table for calculation of NDVIL from DN values.

Sensor Relationship between NDVIDN and NDVIL Notes

ALI T9: NDVIL5NDVIDN (before 22 December 2004) For ALI, bands 3 and 4 are used

T10: NDVIL~ 0:61111DNnir{DNrz25
0:61111DNnirzDNr{119:44

(on or after 22

December 2004)

Blackout area is: DNnir50 and DNr50 (before 22 December 2004);
DNnir g [0, 195] and DNr g [0, 120] (on or after 22 December 2004)

ASTER T11: NDVIL~ 0:59746DNnir{DNrz0:40254
0:59746DNnirzDNr{1:59746

For ASTER, bands 2 and 3 are used

T12: NDVIL~ 0:60919DNnir{DNrz0:39081
0:60919DNnirzDNr{1:60919

T11: for HG mode

T13: NDVIL~ 0:60847DNnir{DNrz0:39153
0:60847DNnirzDNr{1:60847

T12: for NG mode
T13: for LG mode
Blackout area: DNnir g [0, 3] and DNr g [0, 2] for all three gain modes

ETM + T14: NDVIL~
G:DNnir{DNr{ G{1ð Þz254H1

G:DNnirzDNr{ Gz1ð Þz254H2

Equation (T14) is for LPGS products and NLAPS products after 5
April 2004

T15: NDVIL~ G:DNnir{DNrz255H1

G:DNnirzDNrz255H2

Equation (T15) is for NLAPS products before 5 April 2004

where Lmax,j and Lmin,j should be found from the Landsat-7 Science Data
User’s Handbook when the operating modes of bands 3 and 4 are
certified

G~
Lmax, nir{Lmin, nir

Lmax, r{Lmin, r
, H1~

Lmin, nir{Lmin, r

Lmax, r{Lmin, r
and Blackout area for ETM + is variable, depending on the operating

modes of band 3 and 4 of a specific image

H2~
Lmin, nirzLmin, r

Lmax, r{Lmin, r

HRVIR T16: NDVIL~ 1:48885DNnir{DNr

1:48885DNnirzDNr

For HRVIR, bands 2 and 3 are used in calculating NDVI
Blackout area: DNnir50 and DNr50

Hyperion T17: NDVIL5NDVIDN Blackout area: DNnir50 and DNr50

IKONOS T18: NDVIL~ 0:77664DNnir{DNr

0:77664DNnirzDNr
(before 22 February 2001) For IKONOS, bands 3 and 4 are used

T19: NDVIL~ 0:77646DNnir{DNr

0:77646DNnirzDNr
(after 22 February 2001) Blackout area: DNnir50 and DNr50
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where both DNnir and DNr are small and the resultant |NDVIL|>1 is referred to as a

blackout area in the following discussion. The blackout areas for the calculation of

the NDVIL with each sensor studied in this paper are shown in table 2.

2.1 Difference between NDVIL and NDVIDN

For ALI data collected before 22 December 2004, NDVIL and NDVIDN are equal.

However, for the data collected on or after 22 December 2004, the difference

between NDVIL and NDVIDN for any possible combination of DN values for the

nir and red bands is shown in figure 1(a), where the blackout area is excluded. From

figure 1(a) we can see that for ALI, the NDVI calculated using the spectral radiance

is always smaller than that calculated using the DN value so that NDVIL2NDVIDN

is always negative. The difference can be as large as 0.31.

For ASTER data (see tables 1 and 2), the NDVIL is calculated using equations

(T11)–(T13), based on whether the data are acquired with bands 2 (red band) and 3

(nir band) being operated in high gain (HG), normal gain (NG) or low gain (LG)

mode. For the data collected in any of the gain modes, the blackout area is the same,

that is DNnir g [0, 3] and DNr g [0, 2] (see table 2). The difference between NDVIL

and NDVIDN for any possible combination of DN values of nir and red bands is

Figure 1. The difference between NDVIL and NDVIDN (a and b), NDVIR and NDVIDN (c)
and NDVIR and NDVIL (d) for any combination of DN values of near-infrared and red
bands for (a) ALI (16-bit), (b) ETM + NLAPS products (8-bit) prior to 5 April 2004, (c)
ASTER (high gain mode) and (d) ETM + NLAPS products (8-bit) prior to 5 April 2004. The
results for ETM + LPGS products and NLAPS products after 5 April 2004 are very similar
(not shown).

728 X. Zhou et al.
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very similar to that for ALI data collected on or after 22 December 2004; NDVIL is

always smaller than NDVIDN in the area where the blackout area is excluded, but

the difference can be as high as 0.29 (HG mode) and 0.28 (both NG and LG modes).

For the ETM + of Landsat 7 (see tables 1 and 2), there are two calibration modes

available from radiances into DN; the LG and HG modes are selected according to

the time of year (the sun’s position) and the average albedo of the Landsat scene.

Bands 3 and 4 were used in calculating the NDVI. The conversion formulae from

DN values to spectral radiance are shown in table 2 for both LPGS and NLAPS

products. Equations (T14) and (T15) for ETM + in table 2 are general forms used in

calculating NDVIL from DN values. As the operating modes of bands 3 and 4 can

be different (for instance, bands 3 and 4 can both be in the HG mode or band 3 can

be in the HG mode, to enhance data in vegetated area, but band 4 can be in the LG

mode, to prevent saturation in actively vegetated zone), a specific formula has to be

found for a specific image with Lmax,j and Lmin,j to be found from the image header

file, or at least the operating modes of bands 3 and 4 are known from the image

header file. As an example, let us consider ETM + images acquired after 1 July 2000.

If band 3 is in the HG mode and band 4 is in the LG mode, then Lmax,nir5241.1,

Lmin,nir525.1, Lmax,r5152.9 and Lmin,r525.0 W m22 sr21 mm21 (NASA 2006).

Equations (T14) and (T15) in table 2 become:

NDVIL~
1:55922DNnir{DNr{0:72

1:55922DNnirzDNr{18:8063
ð5Þ

NDVIL~
1:55922DNnir{DNr{0:16142

1:55922DNnirzDNr{16:3111
ð6Þ

where equation (5) is for the LPGS products and NLAPS products after 5 April

2004, and equation (6) is for the NLAPS products before 5 April 2004. The blackout

area is DNnir g [0, 10] and DNr g [0, 17] for equation (5), slightly smaller than that

of DNnir g [0, 12] and DNr g [0, 19] for equation (6). The difference between

NDVIL and NDVIDN for any possible combination of DN values of nir and red

bands for the NLAPS products prior to 5 April 2004 is shown in figure 1(b), where

the blackout area is excluded. The differences between NDVIL and NDVIDN for the

LPGS products and the NLAPS products after 5 April 2004 are very similar. The

maximum difference is 0.36 for the LPGS and NLAPS products after 5 April 2004

and 0.34 for the NLAPS products prior to 5 April 2004. Figure 2(a) is a false colour

image (RGB5bands 4, 3 and 2) of an ETM + DN image acquired on 6 May 2002 in

central-western New Mexico, USA (WRS path 34 row 36). Band 3 (red band) was in

HG mode while band 4 (nir band) was in LG mode when this image was acquired.

The red linear feature on the right running from south to north is the Rio Grande

corridor. Along the Rio Grande River, the cottonwood (Populus fremontii) and

saltcedar (Tamarix spp.) are dense. The dark red patches in the image are

mountainous forests. In the northeast corner and to the east of the Rio Grande

River lies Albuquerque city. This image was generated by the NLAPS processing

system. Figure 2(b) shows the (NDVIL2NDVIDN) image generated from the raw

DN ETM + image using equation (6). As expected from figure 1(b), NDVIL is

always greater than NDVIDN; the difference varies between 0 and 0.28. No blackout

area exists in this image. The NDVI is mainly used to study vegetation and we

expect that the NDVI should not be sensitive to the definitions. However, the areas

that have the largest values of (NDVIL2NDVIDN) (see figure 2(b)) correspond to
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vegetated areas, especially in the darker forest regions (figure 2(a)). These results

may indicate that, for ETM + , NDVI definitions using spectral radiance and DN

values are inconsistent.

For the HRVIR sensor onboard SPOT, the blackout area is DNnir50 and DNr50

(table 2). The difference between NDVIL and NDVIDN for any possible combina-

tion of DN values of nir and red bands is very similar to that of ETM + shown in

figure 1(b): NDVIL is always greater than NDVIDN. The largest difference is 0.20.

For Hyperion, the blackout area is DNnir50 and DNr50 (table 2). The calibration

relationship is given by equation (T7) in table 1, that is Lij5DNij/40. Inserting this into

equation (2) and comparing it with equation (1), we arrived at NDVIL5NDVIDN.

This demonstrates that, for Hyperion, the NDVI defined by DN and radiance is the

same. Hyperion is the only sensor in table 2 that was calibrated in this way.

For IKONOS, the blackout area is DNnir50 and DNr50 (table 2), similar to

HRVIR and Hyperion. The difference between NDVIL and NDVIDN for any possible

combination of DN values of the nir and red bands is similar to that of ALI shown in

figure 1(a), except that the dynamic range is 11-bit rather than 16-bit as of ALI;

Figure 2. (a) False colour image (RGB5bands 4, 3 and 2) of ETM + of Landsat 7 acquired
on 6 May 2002 in central-western New Mexico, USA. (b) Image of NDVIL2NDVIDN derived
from the raw DN image for the same area as (a). (c) Image of NDVIR2NDVIDN derived
from the raw DN image. (d) Image of NDVIR2NDVIL derived from raw DN image using
equations (6) and (8).
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NDVIL is always smaller than NDVIDN. The largest difference in magnitude is 0.17.

There is little difference between the products before and after 22 February 2001.

In summary: (1) NDVIL is always greater than NDVIDN for ALI, ASTER and
IKONOS, it is always smaller than NDVIDN for ETM + and HRVIR, and it is

equal to NDVIDN for Hyperion; (2) in general, the difference between the NDVI

calculated from DN values and that from radiance cannot be neglected, especially in

vegetated areas.

2.2 Difference between NDVIR and NDVIDN

NDVI defined by spectral reflectance (equation (3)) can eventually be expressed in
DN values by inserting equation (4) in equation (3), with the spectral radiance given

by the formulae in table 1 in terms of DN values for various sensors. The resulted

NDVIR and the exoatmospheric spectral irradiance of each band used in the

calculation of the NDVIR for the sensors given in tables 1 and 2 are given in table 3.

The blackout area for the NDVIR calculation for each sensor is also given in table 3.

For the ALI sensor, spectral irradiances for bands 3 (r) and 4 (nir) are

Fr51551.47 W m22 mm21 and Fnir51164.53 W m22 mm21, respectively. For data

acquired before 22 February 2004, the NDVIR from planetary spectral reflectance is

given by equation (T20), which is similar to equation (6). For any possible

combination of DN values of nir and red bands, the shape of NDVIR2NDVIDN is
similar to that of figure 1(b): NDVIR is always greater than NDVIDN. The

maximum difference is 0.14. The blackout area for this case is DNnir50 and DNr50.

For data acquired on and after 22 February 2004, the NDVIR is calculated using

equation (T21) in table 3, which is similar to equation (T11) in table 2. The blackout

area is DNnir g [0, 165] and DNr g [0, 136]. For any possible combination of DN

values of nir and red bands, NDVIR2NDVIDN is shown in figure 1(c), where the

blackout area is excluded. For the combinations that DNr>21 698 and

DNnir.23 118, NDVIR is always smaller than NDVIDN, but for other combinations
NDVIR can be larger than NDVIDN. The maximum magnitude of difference is 0.23.

For ASTER, NDVIR can be calculated using equations (T22)–(T24), depending
on whether bands 2 and 3 operate in HG, NG or LG modes. For any gain mode and

any possible combination of DN values of nir and red bands, NDVIR2NDVIDN is

similar to that shown in figure 1(c). For most of the combinations, NDVIR is smaller

than NDVIDN, but for combinations in the areas DNnir(73 and DNr(94 for the

HG mode, DNnir(66 and DNr(94 for the NG mode, DNnir(72 and DNr(95 for

the LG mode, NDVIR can be larger than NDVIDN. This means that in the lower

reflective regions for bands 2 and 3 of ASTER, NDVIR can be larger than NDVIDN.

The maximum magnitude of difference is 0.17 (HG) and 0.16 (NG and LG).

For ETM + , the conversion formulae from DN values to spectral reflectance are

shown in table 3 for both LPGS and NLAPS products. Let us also consider ETM +
images acquired after 1 July 2000. If band 3 is in HG mode and band 4 is in LG

mode, the corresponding equations for the NDVI from spectral reflectance become:

NDVIR~
2:31642DNnir{DNr{5:4617

2:31642DNnirzDNr{23:5475
ð7Þ

NDVIR~
2:31642DNnir{DNr{4:1616

2:31642DNnirzDNr{20:3108
ð8Þ

where equation (7) is for the LPGS and NLAPS products after 5 April 2004 and
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equation (8) is for the NLAPS products before 5 April 2004. The blackout area for

equation (7) is DNnir g [0, 10] and DNr g [0, 23]; and for equation (8) it is

DNnir g [0, 8] and DNr g [0, 20]. The difference between NDVIR and NDVIDN for

any possible combination of DN values of nir and red bands (the blackout area is

excluded) for the NLAPS products prior to 5 April 2004 (equation (8)) is similar to

figure 1(b); NDVIR is always greater than NDVIDN, and the difference can be as

high as 0.47. That for the LPGS products and the NLAPS products after 5 April

Table 3. Lookup table for calculation of NDVIR from DN values.

Sensor
Relationship between NDVIDN and
NDVIL

Exoatmospheric irradiance (W
m22 mm21) and blackout area

ALI T20: NDVIR~ 1:33227DNnir{DNr

1:33227DNnirzDNr
(before 22

December 2004)

For ALI, bands 3 (r) and 4 (nir) are
used

T21: NDVIR~ 0:81417DNnir{DNrz9:309
0:81417DNnirzDNr{135:135

(on

or after 22 December 2004)

Fnir51164.53, Fr51551.47
Blackout area: DNnir50 and DNr50
(before 22 December 2004);
DNnir g [0, 165] and DNr g [0, 136]
(on or after 22 December 2004)

ASTER T22: NDVIR~ 0:83030DNnir{DNrz0:1697
0:83030DNnirzDNr{1:8303

For ASTER, bands 2 (r) and 3 (nir) are
used

T23: NDVIR~ 0:84659DNnir{DNrz0:15341
0:84659DNnirzDNr{1:84659

Fnir51119.47, Fr51555.74

T24: NDVIR~ 0:84559DNnir{DNrz0:15441
0:84559DNnirzDNr{1:84559

T22: for HG mode
T23: for NG mode
T24: for LG mode
Blackout area: DNnir g [0, 3] and
DNr g [0, 2] for all three gain modes

ETM + T25: NDVIR~
G’:DNnir{DNr{ G’{1ð Þz254H ’1
G’:DNnirzDNr{ G’z1ð Þz254H ’2

For ETM + , bands 3 (r) and 4 (nir) are
used

T26: NDVIR~ G’:DNnir{DNrz255H ’1
G’:DNnirzDNrz255H ’2

Fnir51044, Fr51551

where Equation (T25): for LPGS products
and NLAPS products after 5 April
2004;

G’~1:48563
Lmax, nir{Lmin, nir

Lmax, r{Lmin, r
, H ’1~

1:48563Lmin, nir{Lmin, r

Lmax, r{Lmin, r
and

Equation (T26): for NLAPS products
before 5 April 2004

H ’2~
1:48563Lmin, nirzLmin, r

Lmax, r{Lmin, r

Blackout area for ETM + is variable,
depending on the operating modes of
band 3 and 4 of a specific image

HRVIR T27: NDVIR~ 2:21912DNnir{DNr

2:21912DNnirzDNr

For HRVIR, bands 2 and 3 are used in
calculating NDVI
Fnir51052, Fr51568
Blackout area: DNnir50 and DNr50

Hyperion T28: NDVIR~ 1:34218DNnir{DNr

1:34218DNnirzDNr

For Hyperion, bands 33 (0.6812 mm)
and 45 (0.8033 mm) are used in calcu-
lating NDVI
Fnir51131, Fr51518
Blackout area: DNnir50 and DNr50

IKO-
NOS

T29: NDVIR~ 1:03925DNnir{DNr

1:03925DNnirzDNr

(before 22 February 2001)

For IKONOS, bands 3 and 4 are used
in calculating NDVI

T30: NDVIR~ 1:03888DNnir{DNr

1:03888DNnirzDNr

(after 22 February 2001)

Fnir51148, Fr51536
Blackout area: DNnir50 and DNr50
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2004 (equation (7)) is very similar; NDVIR is always greater than NDVIDN, and the

maximum difference is also 0.47. A case study shown in figure 2(c) is the

(NDVIR2NDVIDN) image generated from the raw DN ETM + image (figure 2(a))

of central-western New Mexico. As expected, NDVIR is always greater than

NDVIDN everywhere in the image. The difference varies between 0.13 and 0.44; no

blackout area exists. Similar to the case of (NDVIL2NDVIDN) (see figure 2(b)), the

areas that have largest values of (NDVIR2NDVIDN) correspond to vegetated areas,

especially at the darker forest regions. These results also indicate that for ETM + ,

NDVIs defined using spectral reflectance and DN value are inconsistent, especially

in vegetated areas.

For the HRVIR sensor onboard SPOT, NDVIR is always greater than NDVIDN.

The difference can be as high as 0.39. For Hyperion, NDVIR is always greater than

NDVIDN, with the maximum difference being 0.15. For IKONOS, NDVIR is always

greater than NDVIDN. However, the largest difference is 0.02 for products either

before or after 22 February 2001.

In summary, we conclude that: (1) for ALI data acquired before 22 February 2004,

NDVIR is always greater than NDVIDN. The maximum difference is 0.14. For ALI

data on or after 22 February 2004, NDVIR is always smaller than NDVIDN when

DNr>21698 and DNnir>23118. In the lower reflective region where DNr,21698 and

DNnir,23118, NDVIR can be larger than NDVIDN. The maximum magnitude of

difference is 0.23. (2) For ASTER data, if DNnir.73 and DNr.94 for the HG mode,

DNnir.66 and DNr.94 for the NG mode, and DNnir.72 and DNr.95 for the LG

mode, NDVIR is always smaller than NDVIDN; but in the lower reflective regions for

bands 2 and 3, NDVIR can be larger than NDVIDN. The maximum magnitude of

difference is 0.17 (HG) and 0.16 (NG and LG). (3) For ETM + data, the conversion

from DN values to spectral reflectance for LPGS and NLAPS products is given by

equations (T25) and (T26) in table 3. Specific forms of these equations depend on the

operating modes of bands 3 and 4. For the case that band 3 is in the HG mode and

band 4 is in the LG mode, NDVIR is always greater than NDVIDN for both LPGS

and NLAPS products, with the difference being as high as 0.47. The case study in

central-western New Mexico shows that for ETM + , NDVIs defined using spectral

reflectance and DN values are inconsistent. However, the difference is the largest in

vegetated areas. (4) For HRVIR, NDVIR is always greater than NDVIDN, with the

maximum difference being 0.39. (5) For Hyperion data, NDVIR is always greater than

NDVIDN, with the maximum difference being 0.15. (6) For IKONOS, NDVIR is

always greater than NDVIDN and the largest difference is 0.02. This demonstrates

that, among the sensors studied, IKONOS is the only sensor calibrated in this way for

which NDVI defined using spectral reflectance can be calculated using DN values

directly without resulting in differences greater than 0.02.

2.3 Difference between NDVIR and NDVIL

For ALI data acquired before 22 February 2004, NDVIR5NDVIDN. Thus,

NDVIR2NDVIL5NDVIR2NDVIDN. As discussed in section 2.2, NDVIR is

always greater than NDVIDN. Therefore, for ALI data acquired before 22 February

2004, NDVIR is always greater than NDVIL. The maximum difference is 0.14. For

data acquired on and after 22 February 2004, NDVIR2NDVIL is calculated using

equations (T10) and (T21). The results show that for any combination of DNr and

DNnir (similar to figure 1(b)), NDVIR2NDVIL is always greater than zero, with the

maximum difference being 0.14.

NDVI definitions and areal fraction models 733
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For ASTER data, the results show that NDVIR is always greater than NDVIL for

any operating gain mode, with the maximum difference being 0.16.

As the calculation of both NDVIR and NDVIL for ETM + depends on the

operating gain mode of bands 3 and 4, we take as an example the case that band 3 is

in HG mode and band 4 is in LG mode. For the NLAPS products before 5 April

2004, NDVIR and NDVIL are given by equations (8) and (6), respectively. For any

combination of DNr and DNnir, NDVIR is always greater than NDVIL, as shown in

figure 1(d). The difference can be as high as 0.20. Compared with figure 1(b),

figure 1(d) shows that higher values of (NDVIR2NDVIL) appear at regions where

DNr is higher. As the vegetated area has low spectral reflectance at the red band, it is

expected that in vegetated regions, DNr2DNnir would be low. For the LPGS and

NLAPS products after 5 April 2004, NDVIR and NDVIL are given by equations (7)

and (5), respectively. For any combination of DNr and DNnir, NDVIR is always

greater than NDVIL, which is similar to figure 1(d). The maximum difference is also

0.20. A case study shown in figure 2(d) is the (NDVIR2NDVIL) image generated

from the raw DN ETM + image (figure 2(a)) of central-western New Mexico. As

expected, NDVIR is always greater than NDVIL; thus NDVIR2NDVIL is positive

everywhere in the image. The difference varies between 0.05 and 0.20. Contrary to

the cases of (NDVIL2NDVIDN) and (NDVIR2NDVIDN) (see figures 2(b)–2(c)), the

areas that have lowest values correspond to vegetated areas, even though in most of

the vegetated areas the difference is still greater than 0.14. For instance, a spatial

profile retrieved from a polyline along the vegetated Rio Grande corridor (the dark

linear feature to the right in figure 2(d)) shows that 85% (5890 pixels) of the

6938 pixels of the polyline have a value greater than 0.14. For other types of surface,

the largest difference reaches the possible maximum value of 0.2. These results

indicate that, for ETM + , NDVIs defined using spectral reflectance and radiance

values are more consistent in vegetated areas than those defined using either spectral

reflectance and DN values or spectral radiance and DN values, but the difference

(NDVIR2NDVIL) is still significant (.0.14).

For HRVIR data, NDVIR is always greater than NDVIL, with the maximum

difference being 0.20. Like the ETM + data discussed above, there is a shift of

positions of large difference (NDVIR2NDVIL) to where DNr is higher compared to

the cases of (NDVIR2NDVIDN) and (NDVIL2NDVIDN). Thus, for HRVIR, it is

also expected that, in vegetated areas, DNr2DNnir is lower than in the other areas.

For all IKONOS data (before or after 22 February 2001), the difference

NDVIL2NDVIDN for any possible combination of DN values of nir and red bands

is greater than zero, with the maximum difference being 0.15.

In summary, we conclude that: (1) for all of the sensors discussed, NDVIR is

always greater than NDVIL. The maximum differences are 0.14 (ALI), 0.15

(IKONOS), 0.16 (ASTER) and 0.20 (ETM + and HRVIR). Using spectral radiance

rather than spectral reflectance to calculate the NDVI defined by spectral reflectance

will always underestimate the NDVI; (2) for vegetated areas, the difference between

NDVIR and NDVIL is smaller than for other surface types, but is still significant.

2.4 Optimization of NDVI definitions

The above results show that the differences in NDVI between any two of the NDVI

definitions using spectral reflectance, spectral radiance and DN values are significant,

especially in vegetated areas. Therefore, it is necessary to optimize the NDVI

definitions for consistency in data derived from different sensors and at different

734 X. Zhou et al.
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times. Use of DN values or digital counts and spectral radiance should always be

avoided because data from different sensors are generally different in radiometric

resolutions and thus their respective values carry different levels of information and

cannot be compared directly. In addition, the atmospheric correction to DN values is

often difficult because the physics in the atmospheric correction to DN value is not

clear and often confusing. As reflected spectral radiance is dependent on the incidental

spectral radiance and atmospheric conditions, NDVIs derived from radiance

measured at different times are difficult to compare. From a spectroscopic point of

view, among the three radiative quantities used to define the NDVI, spectral

reflectance is the only property of a material. Spectral reflectance from a specific pixel

does not depend on the intensity of incident solar radiation, while spectral radiance

and DN value do. Therefore, it is expected that NDVIs calculated using spectral

reflectance would be different from those calculated using spectral radiance and DN

values. The DN value depends not only on the intensity of the incident radiance but

also on the analogue-to-digital (A/D) convection and calibration of the specific sensor

(information on gain and offset) of the two bands whose data are used for the NDVI

calculation. If two bands of the same sensor have the same form of DN-to-radiance

conversion (see equations (T1) and (T7) of table 1), the calculated NDVI using

radiance and DN values is the same; otherwise, it is different.

In summary, using spectral reflectance to compute the NDVI will provide a sound

basis for the intercomparison of NDVIs measured over time and by different

sensors. Therefore, using spectral reflectance to define the NDVI or any other

vegetation index should be encouraged, so that the NDVIs measured by different

sensors and at different times are comparable and long-term data consistency can be

guaranteed (Nouvellon et al. 2001, Thenkabail 2004).

3. Fractional vegetation coverage models

3.1 Modes for estimation of areal vegetation coverage

Spectral mixing analysis is a common method used to retrieve subpixel fractional

vegetation cover (F) from remote sensing optical images (e.g. McGwire et al. 2000,

Okin et al. 2001, Asner and Heidebrecht 2002, North 2002, Riaño et al. 2002, Coca

et al. 2004). Spectral reflectance and vegetation indices are used to estimate F

(Choudhury et al. 1994, Wittich and Hansing 1995, Carlson and Ripley 1997, Gillies

et al. 1997, Gutman and Ignatov 1998, Leprieur et al. 2000, Qi et al. 2000, Zeng et al.

2000, Peterson et al. 2002, Lu et al. 2003, Ruiz and Garbn 2004). Most of these

algorithms can be grouped into one of three common F models: the linear spectral

mixing analysis model (referred to as the linear reflectance model) and two NDVI-

based models, the linear NDVI model and the quadratic NDVI model. From the

discussion in section 2, the NDVI should be defined in terms of spectral reflectance

rather than spectral radiance or DN values. Thus, in the following discussion of F

models, we only consider the NDVI defined in terms of spectral reflectance.

The linear reflectance model is a common method used to obtain fractional

vegetation cover within a pixel (e.g. Smith et al. 1990a,b, Roberts et al. 1993, 1998,

Asner and Heidebrecht 2002). The overall reflectance of a pixel of the ith band is

defined as:

Ri~
X

j

RijXj

� �
ð9Þ
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with constraint equation
X

j

Xj~1 ð10Þ

where Rij is the spectral reflectance of the jth endmember for band i, Xj the fractional

surface area covered by the jth endmember, and Ri is the mixed reflectance of a

ground pixel of band i. The fundamental physics for this model is that the reflected

energy from a multicomponent surface collected by a spectroradiometer is a

radiometrically decipherable (and thus linear) combination of the energy reflected

from each component in proportion to its areal percentage, ignoring any non-linear

effects. Thus, the spectral reflectance recorded for a ground pixel at any single band

is the linear combination of the spectral reflectances of the surface features

(endmembers) weighted according to their respective areal proportions (e.g. Adams

et al. 1986, Karnieli et al. 2002).

Based on correlation analyses, Gertner et al. (2002) found that of seven tested

non-linear multiband transformations of Landsat TM images, the NDVI has the

highest correlation with F. Ünsalan and Boyer (2004) presented a theoretical

justification of the NDVI as an indicator of surface vegetation characteristics.

Table 4 shows some F-NDVI linear and quadratic models published. For simplicity,

we categorize these NDVI-based models into the linear NDVI model and the

quadratic NDVI model, respectively, depending on whether a model is a linear or a

quadratic function of the NDVI. The linear NDVI model is expressed as (e.g.

Wittich and Hansing 1995, Gutman and Ignatov 1998, Leprieur et al. 2000, Qi et al.

2000, Zeng et al. 2000, Lu et al. 2003):

F~
NDVI{NDVI0

NDVI?{NDVI0
ð11Þ

and the quadratic NDVI model as (e.g. Choudhury et al. 1994, Carlson and Ripley

1997, Gillies et al. 1997):

F~
NDVI{NDVI0

NDVI?{NDVI0

� �2

ð12Þ

where NDVI‘ is the NDVI of the surface 100% covered by green vegetation (or the

NDVI of the 100% green vegetation endmember) and NDVI0 is the NDVI of 100%

bare soil surface (or the NDVI of the bare soil endmember). The linear NDVI model

assumes that the pixel NDVI is the average of the NDVI of each endmember

weighted by their areal fractions. The quadratic NDVI model assumes that the

average is weighted by the square root of the areal fraction.

3.2 Spectral reflectance and endmember data collection

To compare the derived vegetation areal coverage from the three models as

expressed by equations (9), (11) and (12) with in situ measurements, we first need to

identify the endmembers, measure the spectral reflectance, measure the areal

coverage of each endmember, and derive the NDVI distribution. To this end, the

Sevilleta National Wildlife Refuge (NWR) in central New Mexico, USA was

selected as the study site. As this site is in a semiarid region, the vegetation structure

is relatively simple; there are two main types of vegetated surface, shrub land and

woodland, with distinctive vegetation height and canopy leaf area index (LAI)

736 X. Zhou et al.
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Table 4. Common NDVI-based models for deriving fractional vegetation coverage.

F-NDVI models NDVI0 NDVI‘ F Surface types
Remote sensing
image Reference

F5[N] 0.10 fitted value 0.66 fitted value Estimated from tem-
poral phonological
observations

Vineyard, grass, wheat
field, western Germany

AVHRR Wittich and Hansing
1995

F5[N] 0.04 estimated from
GVI data (0.15u)

0.52 estimated from
GVI data (0.15u)

No field measure-
ments

Global, various AVHRR Gutman and Ignatov
1998

F5[N] 0.05 Estimated from the
images

No field measure-
ments

Global, various AVHRR, TM Zeng et al. 2000

F5[N] 0.20 0.72 Field measurements Sahelian vegetation,
Africa

AVHRR, SPOT Leprieur
et al. 2000

F5[N] Implicitly estimated by linear regression No field measure-
ments

Australia AVHRR Lu et al. 2003

F5[N]?[N] Estimated from scatter plot of remote-
sensed NDVI and surface temperature

Inversed from SVAT
model

FIFE site in Kansas,
USA; MONSOON’90 at
Walnut Gulch in
Arizona, USA

AVHRR, NS001 Gillies et al. 1997

F512(12[N])m

m50.520.75, also
referred to as
F5[N]?[N]

Relationship estimated from a heat balance and a radiative
transfer model

Choudhury et al.
1994

F5[N]?[N] Derived from a radiative transfer model Carlson and Ripley
1997

[N]5[(NDVI2NDVI0)/(NDVI‘2NDVI0)], where NDVI‘ represents the NDVI of the surface 100% covered by green vegetation, and NDVI0 is the NDVI of
100% bare soil surface. Gillies et al. (1997) and Carlson and Ripley (1997) referred to Choudhury et al.’s (1994) results as F5[N]?[N], which could be more or
less observed from Choudhury’s data.
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(Hobbie et al. 2003). Measurements and observation were thus carried out in two

biomass zones: shrubland in a relatively flat area of the refuge, which represents a

biomass zone of low LAI; and piñon-juniper woodland along the eastern slope of

Los Pinos Mountains, which represents a biomass zone of high LAI. Endmembers

in the shrub biomass zone include creosote shrub and bare soil. Measurements and

observations in the shrub biomass were selected in an area of 304 594 m2 (or

375 pixels of an ETM + image), representing ‘uniform’ stands of shrub. The creosote

shrub is about 1 m in height and 1 m in diameter. The LAI is approximately equal to

1. As the piñon-juniper biomass zone has a visible difference in species richness, we

selected two plots, one with high F and the other with lower F for field

measurements, each plot representing relatively ‘uniform’ stands and covering an

area of 304 594 m2 (or 375 pixels of an ETM + image). The endmember spectrum

and ground vegetation areal fraction measurements were sampled randomly within

these three selected plots. The endmembers in the woodland biomass zone include

piñon, juniper and soil. The tree height varies with an estimated mean of 4 m, and

the crown diameter varies with a measured mean of 2.3 m. The canopy LAI was

estimated to vary between 3 and 8.

The spectral reflectance of all endmembers (piñon, juniper, creosote shrub, soils,

and shadow on soil) were measured using a portable hyperspectral spectro-

radiometer (model FieldSpec#Pro FR, Analytical Spectral Devices, Inc., Boulder,

CO, USA) in the same season as the acquisition of a Landsat ETM + image (16 June

2002; WRS path 33 row 36). The field of view of the fore-optic sensor is about 25u.
Measurements were carried out under clear-sky conditions around noon (¡2 h), at a

height between 1 and 2 m above the ground. The fore-optic sensor was placed 2–

5 cm above the arbitrarily selected point of the target. The viewing direction of the

sensor was in nadir (similar to ETM + ). Spectral radiance data were collected for

each endmember and a white reference panel (Spectralon, Labsphere, NH, USA) so

that the spectral reflectance was obtained as the ratio of the spectral radiance data of

the endmember to that of the reference panel. For each vegetation endmember,

measurements were taken for 3–5 shrubs. For each shrub, usually 20–50 samples

were taken; all individuals and samples were randomly selected on the sunlit side.

The mean taken from all the measurements for each endmember was then used as

the representative endmember spectrum for the spectral unmixing analysis.

To measure the fractional vegetation cover in the piñon-juniper biomass zone,

seven ground cells with the same size as an ETM + pixel (28.5 m628.5 m) were

randomly selected, four in one plot with higher F and three in the other plot with

lower F. As the effective field of view for both our field optical measurement and

ETM + sensor is almost vertical, the deformation in the vegetation area due to

viewing angle and topography was therefore neglected. The crown diameter of each

individual tree within each cell was measured, and used to estimate the crown area

by vertical projection. Specifically, the edge of the crown was projected vertically

onto the ground and several distances across the tree trunk were measured and the

average was taken as the crown diameter. Then the crown area of the tree was

calculated as the vertically projected area on the ground. The fractional vegetation

cover of each cell was then calculated by summing the crown areas and dividing by

the cell area. The shrub-crown cover fraction of shrub biomass was measured using

a similar vertical projection method as reported elsewhere (Kurc and Small 2004).

Piñon and juniper in the piñon-juniper biomass zone were treated as one

endmember because of their similarity in spectral reflectance (McGwire et al. 2000).

738 X. Zhou et al.
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3.3 Atmospheric and topographic corrections

The spectral radiance corresponding to each pixel in an image acquired from a

satellite sensor includes the reflected spectral radiance from the surface target and

the path radiance due to the scattering of atmosphere. To calculate the NDVI at the

ground surface, the original Landsat ETM + DN image (16 June 2002; WRS path33

row36) was first converted to spectral radiance L at the sensor (section 2), and then

atmospherically corrected using the dark object subtraction (DOS) method (Chavez

1996, Song et al. 2001) to obtain the surface spectral reflectance Rj,s of the jth band:

Rj, s~
p Lj{Lp, j

� �
d2

Tu, j Td, jFj cos hszFd, j

� � ð13Þ

where Tu,j (Td,j) is the upwelling (downwelling) transmittance of the atmosphere at

the jth band. Fd,j is the downwelling diffuse irradiance due to atmospheric scattering.

Lp,j is the path spectral radiance and is given as:

Lp, j~Lmin, j{
RDO

s, j Td, jFj cos hszFd, j

� �
Tu, j

p
ð14Þ

where Lmin,j is the minimum spectral radiance in the image of the jth band,

corresponding to the dark object (DO) whose surface spectral reflectance is RDO
s, j ,

which is generally takes as 0.01. In the DOS method, Tu,j and Td,j are approximated

by the cosine of the solar and viewing zenith angles, respectively, assuming that

there is very little diffuse downwelling irradiance (Moran et al. 1992, Chavez 1996,

Song et al. 2001, Soudani et al. 2006).

The topography affects the solar incident angle, and thus the spectral radiance. A

digital elevation model (DEM) of 30 m630 m resolution was applied to correct for

the effect of slope angle and aspect using an algorithm developed by Duffie and

Beckman (1991).

3.4 Comparison of modelled results with in situ measurement

The linear reflectance model was used to obtain the fractional vegetation cover by

unmixing analysis. Shadow (darkness cast on one endmember due to another, e.g.

vegetation shadow on soil) and shade (darkness cast within the endmember, e.g.

some leaves in shadow of other leaves) change the reflected radiance from a pixel.

First, we estimated the shadow fraction so that we could use the endmember

spectral reflectance and surface coverage to compare the modelled results with in situ

measurements. Three endmembers (vegetation, bare soil, and shadow on soil) were

used in the linear reflectance model. To estimate the shadow effect, the derived

vegetation fractions from the linear reflectance model with and without the shadow

endmember were compared with each other and also with the measurement.

For shadow corrections due to the oblique solar position, we assumed that (a) the

solar shadow of the vegetation falls on the intercanopy space, and (b) the cross-

section of a vegetation crown has a shape between a triangle and a rectangle. The

solar shadow factor (SF) of vegetation, which is defined as the ratio of the actual or

effective shadow area of vegetation to the vertically projected canopy area (see

figure 3), is thus given by:

SF~
Ashadow

Acanopy
ð15Þ

NDVI definitions and areal fraction models 739
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where Ashadow and Acanopy are the effective shadow area and vertically projected

canopy area, respectively. Assuming the vegetation height is h, the height of the

trunk below the vegetation crown is hb, the diameter of the vertical projection of the

vegetation crown is D, and the solar zenith angle is h, then:

Acanopy~p
D

2

� �2

ð16Þ

For Landsat ETM + , the viewing geometry is in nadir, thus the shadow is mainly

determined by the solar zenith angle once the tree geometry is specified. From

figure 3, if the shadow is within the vertically projected canopy area, the shadow

area is zero, that is:

Ashadow~0, if h tan hƒ D=2ð Þ ð17Þ

Otherwise, the effective shadow area is the theoretical shadow area (projected area

from solar ray direction) subtracted by the part that overlaps with the vertically

projected canopy area. The respective altitude is (h tan h2D/2) if the shadow

overlaps with the crown vertical projection, or (h tan h2hb tan h) if not. Combining

these two situations, we have:

Ashadow~
3

4
h tan h{max hb tan h,

D

2

� �� �
D, if h tan hw D=2ð Þ ð18Þ

Inserting equations (16)–(18) into equation (15), we have:

SF~

3
4 h tan h{max hb tan h, D

2ð Þð ÞD
p D

2ð Þ
2 , for h tan hwD=2,

0, for h tan hƒD=2,

8
<

:
ð19Þ

The SF correction factor depends on the canopy geometry, specifically the canopy

aspect ratio (h/D). For example, SF varies from 0, 0.15, 0.37 to 0.58 for an aspect

ratio (h/D) of 1, 1.5, 2 and 2.5, respectively. In the shrub biomass zone discussed in

the text, the canopy aspect ratio is around 1, the shadow effect is very small because

SF is near zero. For the woodland sites, it is difficult to assign an accurate SF for the

woodland sites where piñon and juniper have different canopy aspect ratios and the

proportions of the two vegetation types vary with the pixels. We used an average

canopy diameter of 2 metres, and an average canopy height of 4 metres, estimated

Figure 3. The tree shadow caused by the oblique solar position.
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from the observations of seven field pixels. For the above shadow correction method

(equation 19) to be transferable to other sites, basic vegetation characteristics such

as individual tree height, height of the trunk below the vegetation crown, and the

diameter of the vertical projection of the vegetation crown need to be known. To

obtain the best results, this model may apply only to situations where canopy

shadows are not intercepted by neighbouring canopies.

Using the field-measured spectral reflectance for the endmembers (vegetation,

shadow of vegetation on soil, and soil) in equations (11) and (12), the linear and

quadratic NDVI models were applied to estimate the fractional vegetation cover for

each pixel. The mean fractional vegetation cover for all of the pixels in each plot

(375 pixels) is taken as the representative fractional vegetation cover F for the plot.

The derived F from the three models was then compared to the field-measured F for

each plot in table 5.

The measured mean spectral reflectances of the surface endmembers for each

biomass zone are shown in figure 4 and are taken as the representative spectral

reflectance of each endmember in the biomass zone. The derived (see equation (3))

NDVI is 0.748 and 0.077 for the shrub and intershrub soil, respectively, in the shrub

biomass zone; and 0.766 and 0.069 for the piñon-juniper and intercanopy soil,

respectively, in the piñon-juniper biomass zone. As discussed in section 3.2, the

mean fractional vegetation cover of each sample cell was calculated by summing the

crown areas and dividing by the cell area. The measured mean fractional vegetation

coverage for each plot (304 594 m2) was taken as the average of the mean fractional

vegetation cover of each cell, for all cells sampled. The measured mean fractional

vegetation coverage in the shrub biomass zone (plot 1) was about 0.30. Those for the

dense piñon-juniper plot (plot 2) and the less dense piñon-juniper plot (plot 3) in the

piñon-juniper biomass zone are 0.33 and 0.21, respectively (see table 5).

Table 5. Comparison of the fractional vegetation coverage for each plot (area5304 594 m2) in
the shrub biomass zone (plot 1) and woodland biomass zone (plots 2 and 3) obtained from
field measurements and derived from the linear reflectance (LR), linear NDVI (LN) and

quadratic NDVI models (QN).

Statistics Field* LR1 LR2 LN QN

Shrub biomass zone
(plot 1)

Mean 0.30 0.306 0.306 0.117 0.014
Standard deviation 0.026 0.026 0.012 0.003
Minimum 0.227 0.227 0.081 0.007
Maximum 0.376 0.376 0.155 0.024

Woodland
biomass zone
(plots 2 and 3)

Mean 0.33 0.448 0.355 0.318 0.103
Standard deviation 0.067 0.053 0.044 0.028
Minimum 0.285 0.226 0.201 0.040
Maximum 0.610 0.488 0.443 0.197
Mean 0.21 0.340 0.274 0.194 0.039
Standard deviation 0.066 0.053 0.036 0.015
Minimum 0.174 0.139 0.083 0.007
Maximum 0.500 0.407 0.304 0.093

LR1, linear reflectance model without shadow-effect correction (two endmembers: soil,
vegetation); LR2, linear reflectance model with shadow-effect correction (three endmembers:
soil, vegetation, and shadow).
*Field-measured F (the number of tree stands or tree clusters) of 0.27 (67), 0.30 (68), 0.40 (82)
and 0.33 (56) in plot 2, and 0.21 (21), 0.26 (39) and 0.17 (25) in plot 3 of the woodland
biomass, respectively.
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The fractional vegetation coverage was also derived from the pixel spectral

reflectance (for the linear reflectance model) and pixel NDVI (for the two NDVI-

based fraction models) for all pixels (375 pixels) in each plot. The average fractional

vegetation coverage for each plot is the mean fractional vegetation coverage of all

pixels in the plot and is given in table 5. The linear reflectance model gives the largest

F, while the quadratic NDVI model gives the lowest for all three plots. In the shrub
biomass zone (plot 1), the linear reflectance model gives a mean fractional

vegetation cover of 0.306, which agrees well with the field measurement (F50.30).

The shadow effect in the linear reflectance model is not visible for plot 1. Both linear

(F50.117) and quadratic (F50.014) NDVI models underestimate the fractional

vegetation coverage as compared with our field measurements. In the piñon-juniper

biomass zone, the linear NDVI model gives the best agreement with the

measurement (0.318 of model versus 0.33 of measurement for plot 2; 0.194 of

model versus 0.21 of measurement for plot 3). The linear reflectance model with
shadow effect corrected overestimates the F (0.355 of model versus 0.33 of

measurement for plot 2; 0.274 of model versus 0.21 of measurement for plot 3),

while if shadow effect is not corrected, it overestimates the F by more (0.448 of

model versus 0.33 of measurement for plot 2; 0.340 of model versus 0.21 for plot 3).

In both plots in the woodland biomass zone, the quadratic NDVI model

underestimates F. A detailed comparison of the seven field data sets (cells) with

the model-derived F of the respective pixels is shown in figure 5. The conclusion of

the relative performance of the models is the same as that drawn from table 5: in the
woodland biomass zone, the linear NDVI model outperforms the other two models.

4. Results and discussion

Consistency of regional and global greenness and vegetated areal coverage products
generated from different satellite sensors and at different times is very important in

the long-term monitoring of variability and change in land cover, and carbon cycle

Figure 4. Field-measured reflectance spectra of the surface endmembers at six ETM +
bands.
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and sequestration by regional and global biospheres. For long-term data analysis

and the effective use of remote sensing data from multiple sensors spanning decades,

intercomparability and data continuity among these sensor systems are necessary

(Vogelmann et al. 2001, Thenkabail 2004). NDVIs derived from different sensors

are sensor dependent (Steven et al. 2003). Factors that affect the NDVI values if

calculated from all three definitions for the same type of vegetation photosynthesiz-

ing at the same rates include sun–target–sensor geometry, topography, intensity of

incident radiation, atmospheric condition, background soil type, spatial resolution,

spectral bandwidth, and the shape of the filter transmittance curves of the sensors,

A/D convection and instrument calibration. The filter transmittance curves (also

called spectral response functions of the sensor) are integrated in the calibration

coefficients and are therefore not given separately (in table 1).

The varieties of NDVI definitions add another dimension of inconsistency and

system errors. With the increasing number of sensors in coming years, this situation

could become even worse. Fortunately, efforts to evaluate and standardize sensor

data for long-term intercomparison studies (e.g. Liang 2001, Bricaud et al. 2002,

Goward et al. 2003, Thenkabail 2004, Soudani et al. 2006) and standardize the

remote sensing terminology (e.g. Schaepman-Strub et al. 2006) have been started

and are being actively pursued. Standardization of remote sensing concepts such as

the NDVI will eventually contribute to data consistency and system-error reduction

among publications in the remote sensing literature.

Our results for six multi- and hyperspectral sensors (ALI, ASTER, ETM + ,

HRVIR, Hyperion, and IKONOS) show that the difference in NDVI defined by

spectral reflectance, spectral radiance and the DN value is sensor dependent but is

always significant, especially for vegetated regions. Therefore, the three definitions

are not consistent. Optimization is necessary for long-term data consistency; the

Figure 5. Comparison of model-estimated F and field-measured F within the seven sample
cells in the woodland biomass zone. LR1, linear reflectance model; LR2, linear reflectance
model with shadow correction; LN, linear NDVI model; QN, quadratic NDVI model.
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NDVI should only be calculated by spectral reflectance. To guarantee the long-term

NDVI data availability from characteristically different sensors, intersensor

comparability and inter-relationships are being sought (Nouvellon et al. 2001,

Steven et al. 2003, Thenkabail 2004). For instance, Nouvellon et al. (2001) reported

relationships between ecological variables and spectral-derived indices including the

NDVI using Landsat TM and ETM + data. Steven et al. (2003) established an

intersensor conversion relationship of the vegetation index for a series of satellite

sensors. Thenkabail (2004) established intersensor model equations relating

IKONOS NDVI with ETM + NDVI by intercomparison between these two

characteristically distinct sensor systems.

For vegetation areal coverage, a simple and accurate mapping model using

remote sensing data is desirable. To achieve this, a simple relationship between the

vegetation fractional coverage within a pixel and the pixel NDVI is being actively

looked for because it can reduce the burden of identifying the endmembers and the

reflectance spectrum of all endmembers in each pixel if unmixing analysis is

performed to obtain the vegetation fraction in each pixel.

Physically, the linear reflectance model is a first-order approximation to the

radiative interaction between solar radiation and endmembers. When the vegetated

surface is composed of spectrally separable and radiometrically isolated end-

members, a mixed pixel can be simplified as a linear combination of endmembers

(Adams et al. 1986). However, some non-linear interaction resulting from multiple

scattering inevitably occurs between surface endmembers (i.e. intermembers), for

example between vegetation and soil in the intercanopy space (Guan et al. 2008).

This interaction increases the probability of photons being absorbed and scattered

in various directions by the endmembers, reducing the surface spectral reflectance

due to single scattering, which is determined by the single scattering albedo (Zhou

et al. 2003). The expected consequence is that the linear reflectance mode will

perform well in areas where vegetation is sparse and the non-linear effect resulting

from multiple scattering is small, and will overestimate the vegetation fraction in

areas where vegetation is dense and the non-linear effect is not negligible. The results

from the comparison of the linear reflectance model with in situ measurements

(section 3) show that the linear reflectance model works well in the shrub biomass

zone. This may indicate that the non-linear effect due to multiple scattering of light

between shrub and bare soil is not so important, which is understandable

considering that the vegetation height and LAI are low, and the leaves are small

and sparse for the shrub biomass. In the piñon-juniper biomass zone, the linear

reflectance mode with or without shadow correction overestimates the fractional

vegetation coverage. This may indicate that non-linearity cannot be neglected in

piñon-juniper woodlands, which is consistent with the above observation in the

shrub biomass zone, considering that the piñon-juniper trees are much higher and

LAI is much larger than creosote shrubs. For this case, a non-linear spectral mixing

analysis should be considered (Roberts et al. 1993, Borel and Gerstl 1994, Ray and

Murray 1996).

The vegetation shadow decreases the total spectral reflectance by adding a new

surface endmember with near-zero spectral reflectance (figure 4). Comparison

studies with and without shadow correction indicate that the shadow effect in the

shrub biomass zone is negligible due to the lower LAI and lower height of the

shrubs, which is consistent with the observation that non-linear effect due to

multiple scattering is negligible in the shrub biomass zone. However, shadow effects

744 X. Zhou et al.
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are clearly observed in the piñon-juniper biomass zone with taller vegetation and a

higher canopy LAI (see table 5 and figure 5). The estimation of F from the linear

reflectance model in the piñon-juniper biomass zone improved significantly after

shadow correction was performed (figure 5).

Based on the optimized NDVI definition, assessment of the three vegetation

fraction models by comparison with in situ measurement in section 3 shows that the

linear NDVI model underestimates F in the shrub biomass zone, whereas it gives

good estimates in the piñon-juniper woodland zone (figure 5 and table 5). Coca et

al. (2004) reported that the NDVI-based model works well for pine forest but not

for grassland; and Riaño et al. (2002) reported that NDVI models work well in

estimating F for the mixed chaparral in northern California but not for coastal sage

scrub. Our comparison study shows that no significant difference was found

between the derived vegetation fractions with and without shadow correction from

the linear NDVI model in the piñon-juniper biomass zone. This may suggest that

the different performance of the linear NDVI model between the shrub biomass

zone and the piñon-juniper biomass zone is due to site-specific characteristics such

as canopy LAI and vegetation height rather than shadow effects (Gutman and

Ignatov 1998). One possible reason for the good performance of the linear NDVI

model in the piñon-juniper biomass zone is that the NDVI can partially capture

non-linearity in the interaction between radiation and the piñon-juniper woodland.

Our results show that the quadratic NDVI model generally underestimates F in

both shrub and piñon-juniper biomass zones (figure 5 and table 5). We should point

out, however, that the vegetation areal fraction estimated from the NDVI-based

models may be more accurately referred to as the areal fraction of greenness

because the NDVI is more a measure of greenness, whereas the vegetation areal

coverage includes green leaves, senesced leaves, branches, trunks, and litter.

However, as our measurement of areal fraction was on perennial vegetation (both

creosote shrub and piñon-juniper) and in an actively growing season (June), this

difference is neglected.

Comparisons of the linear reflectance model and the NDVI-based models by

other researchers (McGwire et al. 2000, North 2002, Riaño et al. 2002, Coca et al.

2004) suggest that the linear reflectance model usually outperforms the linear NDVI

model. Some of the studies show that F correlates well with the NDVI in high LAI

vegetation (Riaño et al. 2002, Coca et al. 2004). Our results suggest that the

vegetation fraction derived from the linear reflectance model agrees better than the

other two models in the shrub biomass zone (low LAI regions) and the linear NDVI

model outperforms the other two in the piñon-juniper biomass zone (high LAI

regions). In our assessment, the atmospheric effect was appropriately corrected for

but the bidirectional correction was not performed. As our assessment was carried

out using ETM + data whose viewing zenith is in nadir and the in situ measurements

of spectral reflectance were also acquired with optics in nadir, the directional effect

is deemed negligible (Levin et al. 2004).

5. Conclusions

We conclude that: (1) spectral reflectance should always be used in calculating the

NDVI. Using spectral radiance to calculate the NDVI defined by spectral

reflectance always underestimates the NDVI and results in an absolute error as

high as 0.14 for ALI, 0.15 for IKONOS, 0.16 for ASTER, and 0.20 for ETM + and

HRVIR; the difference in NDVI due to any two of the NDVI definitions is sensor

NDVI definitions and areal fraction models 745
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dependent and is always significant. This is different from the general belief that

using the DN value, spectral radiance or spectral reflectance often has little impact

in calculating the NDVI within the context of an individual study (Price 1987,

Steven et al. 2003). Combing the results from Steven et al. (2003), that vegetation

indices from different satellite sensors cannot be regarded as directly equivalent, we

conclude that the NDVI depends not only on the specific sensor but also on the

form that is used to calculate the NDVI. Optimization of NDVI definitions is

necessary. (2) Using the DN value or spectral radiance to calculate the NDVI should

always be avoided. Using the DN to calculate the NDVI defined by spectral

reflectance can result in an error as high as 0.23 (overestimate) for ALI, 0.17

(overestimate) for ASTER, 0.47 (underestimate) for ETM + , 0.39 (underestimate)

for HRVIR, 0.15 (underestimate) for Hyperion, and 0.02 (underestimate) for

IKONOS. IKONOS is the only sensor thus calibrated that the NDVI defined using

spectral reflectance can be estimated using the DN value directly without causing

differences greater than 0.02. (3) In deriving the fractional vegetation coverage, the

linear reflectance model outperforms the NDVI-based models (linear NDVI and

quadratic NDVI models) in the shrub biomass zone. (4) Comparison of the model-

derived F with in situ measurements shows that the linear NDVI model outperforms

the other two models in the piñon-juniper biomass zone. The NDVI models are

generally less sensitive to vegetation shadow than the linear reflectance model.
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