Recommended Methodology and Processes for Mine Water Treatment

Mine Design, Operations & Closure Conference April 29, 2014

> Mark A. Reinsel, Ph.D., P.E. Apex Engineering, PLLC

Presentation Outline

- Steps in Selecting a Treatment Process
- Specific Contaminants
- Potential Treatment Technologies
- Mine Water Applications
- Recommendations
- Additional Resources

First Question

Usually Is: What Does It Cost?

Should Be: What Are the Objectives?

Steps in Selecting a Process

- Explore/confirm design criteria
- Review potential treatment technologies
- Develop process flow diagram
- Develop budgetary capital and operating costs
- Perform bench and/or pilot tests

Design Criteria

- 1. Flow
 - Maximum (design capacity)
 - Average (for determining operating costs)
- 2. Influent concentrations
 - Are they already known?
 - How well can they be estimated/modeled?
- 3. Effluent concentrations
 - Are permit limits already established?
 - If not, can they be estimated?

- Collect as much information as possible
- Good communication between client and water treatment consultant, and between consultants

Typical Contaminants of Concern in Mining Waters

Suspended metals
Dissolved metals
Nitrate
Ammonia
Arsenic
Sulfate

Potential Treatment Technologies

Chemical

Biological

Physical Treatment Technologies

Clarification

Filtration

Membranes

Clarifier at Kensington Mine

Clarifier centerwell at Central Treatment Plant (Kellogg, ID)

Clarifier overflow at Central Treatment Plant

Filtration

Bag filters
Cartridge filters
Sand filters
Multimedia filters

Typical Multimedia Filter

No. 1 Anthracite Coal

Silica Sand

Fine Garnet Support Gravel

1000-gpm multimedia system at Lucky Friday Mine (Mullan, ID)

Membrane Processes

Microfiltration (MF)
Ultrafiltration (UF)
Nanofiltration (NF)
Reverse osmosis (RO)

500-gpm UF system at Montanore Mine (Libby, MT)

RO Disadvantages

- Produces high-volume, continuous waste stream
- Can be energy-intensive
- Removal of monovalent ions such as nitrate may be limited
- Will not remove dissolved gases (e.g., ammonia)

Chemical Treatment Technologies

Hydroxide precipitation
Sulfide precipitation
Oxidation/reduction
Ion exchange
Natural zeolites

Hydroxide Precipitation

- Typically use lime to increase pH
- Can be hydrated lime or pebble lime (slaker)
- Can also use caustic soda (liquid), soda ash or magnesium hydroxide
- pH target depends upon contaminants of concern
- Co-precipitation can increase removal

Central Treatment Plant in Kellogg, Idaho

Aeration Basin at Central Treatment Plant

Sulfide Precipitation

- Typically used as "polishing" step for low metals concentrations
- Will achieve lower levels than hydroxide ppt.
- Can use sodium sulfide or hydrosulfide (NaHS)
- Need little reagent and low retention time
- Perform at neutral-to-alkaline pH to avoid H₂S

Oxidation/Reduction

- May be required to transform contaminants into less-soluble form
- Arsenic: Add oxidizing agents such as chlorine, hydrogen peroxide, ozone, permanganate
- Chromium, selenium: Add reducing agents such as sodium bisulfite or metabisulfite
- Reaction is quite rapid
- Will add TDS

Ion Exchange (IX)

- Specific resins available for dissolved metals, arsenic, nitrate
- Sodium or chloride are exchanged for contaminants removed
- Several resin manufacturers available
- Resin is expensive but can be regenerated (onsite or off-site)
- Waste stream is typically much less than RO

IX vessels at Buckhorn Mountain

Natural Zeolites

Can be used for ammonia removal
Also have a high selectivity for thallium
Much less expensive than IX resin
Regenerate with salt

Biological Treatment

Can be used for the following contaminants:
Organics
Ammonia
Nitrate
Selenium
Sulfate

Biological Treatment Technologies

Attached growth systems
Suspended growth systems
Membrane bioreactors

Attached Growth Systems

Bacteria are attached to a surface or media

Biofilm provides a very robust process
Very resilient to changes in flow, pH, concentrations, etc.
Best choice for high concentrations

Biological treatment system at Key Mine (Republic, WA)

Sulfate levels at the Key bio-treatment system

Biological nitrate removal system at Stillwater Mine (Nye, MT)

Bench/Pilot Testing

- Will determine whether selected technology can meet discharge limits
- Can provide valuable information for fullscale capital and operating costs
- May be required by agencies
- Bench testing is simpler, shorter and less expensive than pilot testing
- Jar tests or column tests?

Possible Jar Tests

Chemical precipitation
Oxidation
Coagulation/flocculation
IX/zeolites

Possible Column Tests

Leach testing for nitrate/ammonia
IX
Biological

Recommendations

Organics

- Biological treatment or activated carbon
- Dissolved metals
 - Hydroxide ppt. or sulfide ppt. or IX

Nitrate

- Denitrification (attached growth) in almost all cases
- Ammonia
 - Nitrification or zeolites or breakpoint chlorination
- Arsenic
 - Iron coagulation/filtration or adsorptive media or IX
- Sulfate
 - Biological (attached growth) or chemical ppt. or NF

Additional Resources

Reference Guide to Treatment Technologies for Mining-Influenced Water

- EPA, March 2014
- Passive and active treatment
- www.clu-

in.org/download/issues/mining/reference_guide_to_treatment_t echnologies_for_miw.pdf

Cost table at end of document

Mining Waste Treatment Selection technology

- More on active treatment
- www.itrcweb.org/miningwasteguidance/technology_overviews.htm

NAP Global Acid Rock Drainage (GARD) Guide

www.gardguide.com/index.php/Chapter_7

Questions?

Mark Reinsel mark@apexengineering.us (406) 459-2776

