Effective Application of Groundwater Modeling to Design Construction Dewatering and Water Treatment Infrastructure

d Annual Mine Design, Operations, and Closure Conference

av 2015

McLaren Tailings Presentation Overview

- History
- Project Setting
- Challenges
- Design Approach
- Construction
- Results

History

New World Mining District

Near Cooke City and Northeast Entrance to Yellowstone National Park Site of Crown Butte \$65 M Buyout in 1997 and USFS \$30 M Cleanup

McLaren Mill

Processed Au and Cu ore from 1933 - 1953 Tailings impoundment grew over Soda Butte Creek and Miller Creek 1950 tailings release mapped to the Lamar River

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach
- Construction
- Results

Project Setting

McLaren Mill and Tailings

Approximate Pre-Mining Creek Locations

Pre-mining Miller Creek (approximate)

Pre-mining Soda Butte Creek (approximate)

Tailings Impoundment

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach
- Construction
- Results

Challenges

- Environmental Issues
 - Dam failure seismic stability
 - Flooding/erosion of tailings impoundment
 - Perpetual contamination to Soda Butte Creek: 303(d) impaired water body

Soda Butte Creek Below Tailings No Color Enhancement

Tailings Discharges (USGS): Fe 418 mg/L Al 122 mg/L Cu 6 mg/L Pb 0.6 mg/L Cd 0.06 mg/L

Approximate Annual Loads: 40,000 lb Fe 12,000 lb Al 590 lb Cu 58 lb Pb 6 lb Cd

Challenges

- Environmental Issues
 - Dam failure seismic stability
 - Flooding/erosion of tailings impoundment
 - Perpetual contamination to Soda Butte Creek: 303(d) impaired water body

Climate - Offseason

Challenges

- Environmental Issues
 - Dam failure seismic stability
 - Flooding/erosion of tailings impoundment
 - Perpetual contamination to Soda Butte Creek: 303(d) impaired water body
- Climate/Remoteness

Materials Instability Water Saturated Tailings

Challenges

- Environmental Issues
 - Dam failure seismic stability
 - Flooding/erosion of tailings impoundment
 - Perpetual contamination to Soda Butte Creek: 303(d) impaired water body
- Climate/Remoteness
- Materials stability of wet tailings is very poor
- Groundwater/Surface Water
 - Groundwater fluctuates 14 to 16 feet annually
 - Artesian conditions in the spring

Surface Water - Soda Butte Creek

Soda Butte Creek at Cooke City 1975-1977

Artesian/Confined Aquifer Below Impoundment

EPA Fluid Level Data 1989-1993

Subsurface Recharge

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach for Construction Dewatering
 - Conduct Pilot Dewatering Test and Extended Monitoring
 - Develop Objectives and Considerations for the Design
 - Optimize Construction Dewatering with Groundwater Model
 - Design Water Treatment Facility
- Construction
- Results

Pilot Dewatering Test

Pilot Dewatering Test

Pumping Test Results

- Aquifer characterized as "leaky-confined"
- Hydraulic conductivity (K) :
 - In underlying alluvium, 25 to 125 feet per day (ft/day).
 - In tailings, 0.0045 ft/day.
- Results from deep piezometers identify general location of historic Soda Butte Creek Channel.
- Minor pumping test effected groundwater over a significant portion of the site.
- Drawdown observed in shallow piezometers show tailings can be dewatered by pumping the alluvium.

Monitoring - Groundwater Seasonality

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY

Test Findings

- Much of the tailings impoundment is perpetually water saturated
- Large contact area (12 acres) between high conductivity alluvial aquifer and low conductivity tailings
- Underlying alluvium and tailings respond together
- Tailings can't be dewatered separately from underlying aquifer
- Conductive cobble/boulder lenses associated with historic flow channels in alluvial aquifer

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach for Construction Dewatering
 - Conduct Pilot Dewatering Test and Extended Monitoring
 - Develop Objectives and Considerations for the Design
 - Optimize Design with Groundwater Model
 - Design Water Treatment Facility
- Construction
- Results

Objectives and Conceptual Construction Dewatering Design

- Minimal materials stability in tailings
 - Accommodate using pumping wells instead of dewatering trenches
- Excessive alluvial depth
 - Not cost effective to use a cutoff wall in the northeast corner to minimize incoming groundwater
- Accommodate Winter conditions
 - Design system for operation during freezing weather
- Anticipate Extreme Spring Conditions (14 to 16 ft Groundwater Fluctuations)
 - Pump perimeter wells (no treatment) to reduce annual spike
 - Requires design of system for year-round operation
- Utilize Underlying Alluvium to Dewater Tailings
 - Screen construction wells in underlying alluvium

Utilize Underlying Alluvium to Dewater Tailings

Dewater Tailings

Construction Water Table

Objectives and Conceptual Construction Dewatering Design

- Minimize treatment of contaminated water
 - Intercept clean water with pumping wells around upgradient perimeter
 - Remove tailings water with central pumping wells
 - Treat diluted tailings water
- Offset Buoyancy of Treatment Pond Buoyancy during spring
 - Maintain flow through lined sediment pond during winter
 - Requires design of system for year-round operation

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach for Construction Dewatering
 - Pilot Dewatering Test and Extended Monitoring
 - Develop Objectives and Considerations for the Design
 - Optimize Construction Dewatering with Groundwater Model
 - Design Water Treatment Facility
- Construction
- Results

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach for Construction Dewatering
 - Pilot Dewatering Test and Extended Monitoring
 - Develop Objectives and Considerations for the Design
 - Optimize Construction Dewatering with Groundwater Model
 - Estimate optimal pumping rate
 - Optimal pumping well locations while minimizing volume of treated water

1. Estimate Optimal Pumping Rate

1. Estimate Optimal Pumping Rate Construct Groundwater Model

Groundwater Model: Oblique View

1. Estimate Optimal Pumping Rate

- Typical flow underneath tailings impoundment
 - 600 to 700 gallons per minute (gpm)
 - To design system, separated flow into six zones.
- Simulate construction dewatering
 - Pumping of storage
 - Accommodate high water conditions
 - -+300 gpm to construction dewatering system
- Add localized dewatering needs and safety factor
 +500 gpm to construction dewatering system
- Estimated 1,500 gpm total

Pumping Well Locations

Saturated Tailings (Approximate)

 Groundwater Flow Lines

C3-3

C3-7

C3-8

C3-10

Capture of Clean Groundwater Using Perimeter Wells

C3-10

Capture of Impacted Groundwater Using Interior Wells

All Groundwater Routed to Water Treatment Facility C3-8 C3-7 C3-6

C3-10

Capture of Impacted Groundwater Using Interior Wells

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach for Construction Dewatering
 - Conduct Pilot Dewatering Test and Extended Monitoring
 - Develop Objectives and Considerations for the Design
 - Optimize Construction Dewatering with Groundwater Model
 - Design Water Treatment Facility
- Construction
- Results

Tailings Water Quality

Cu and Fe > 1000x DEQ-7 Pb > 100x DEQ-7 Cd, Ag, As, Zn > 10x DEQ-7 1-5 million gallons water

30 feet of tailings

Clean water from 14 Perimeter Wells Enters Building and Bypasses Treatment System

 Flocculent added to speed precipitation

Lime-amended water aerated in rotating

Impacted Water from 3 Interior Wells Treated Using Lime Slurry

Clean Water Bypassed

Treated Water Routed to a Clarifier Pond

MM

Inde USDA Fann Service Agenci

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach
 - Conduct Pilot Dewatering Test and Extended Monitoring
 - Develop Objectives and Considerations for the Design
 - Optimize Construction Dewatering with Groundwater Model
 - Design Water Treatment Facility
- Construction
- Results

Construction of Dewatering Wells

Construction of Dewatering Wells

• Installed 17 wells

- 14 pumping wells along the perimeter of the tailings impoundment
- 3 pumping wells within the tailings impoundment footprint
- All 17 pumping wells screened in the alluvial aquifer beneath the bottom of the tailings
- A subset of perimeter wells operated year round

2011 Construction Season (Prior to use of Dewatering Wells)

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY

2012 Summer Construction Dewatering

- Three pumping wells under the tailings activated
- Approximately 300 gallons per minute water piped to water treatment plant and treated
- Weekly laboratory analysis of water quality throughout treatment process
- Comparison of 2010 and 2012 fluid levels indicates 25 30 feet of drawdown achieved in the three pumping wells

Clarification Pond and Clean Water Bypass

Typical August Groundwater Level

Approximately 30 feet of tailings

Note Relatively Dry Conditions

Dewatered AMD Seeps BEFORE:

Photo taken August 22, 2008

Dewatered AMD Seeps AFTER:

Same AMD seep dry during high groundwater

Photo taken July 25, 2012

McLaren Tailings Overview

- History
- Project Setting
- Challenges
- Design Approach
 - Pilot Dewatering Test and Extended Monitoring
 - Conceptual Design
 - Optimize Construction Dewatering with Groundwater Model
 - Design Water Treatment Facility
- Construction
- Results

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY Results

- Detailed site investigation data critical to develop conceptual and numerical models
- System design not possible without numerical modeling
- Successes of the dewatering system:
 - Put the project <u>one year ahead of schedule;</u>
 - Significantly reduced lime costs; and
 - Allowed systematic and complete excavation of tailings 20 feet below pre-system groundwater elevation
- Water quality on reconstructed channels of Soda Butte and Miller Creeks complies with DEQ-7

Soda Butte Creek

MONTANA DEPARTMENT OF ENVIRONMENTAL QUALITY Awards

 2015 National Recognition Award from American Council of Engineering Companies

- Montana Contractors Construction Excellence Award
 - Overall Excellence Award
 - Special Recognition Water Quality

Mon Abjectizies for Construction LITY Dewatering Design

• Criteria:

- Efficiency
- Cost-Effective, and
- Feasibility
- **Develop Feasibility Considerations:** for Construction Dewatering Design
- **Identify :** Key aspects of the conceptual dewatering design

Mon Abjectizies for Grasteviction LITY Dewatering Design

• Criteria:

- Efficiency
- Cost-Effective, and
- Feasibility

Final Pumping Well Design Locations

