REMEDIATING AND RESTORING SMELTER-DEVASTATED LANDS NEAR ANACONDA, MONTANA

Old Works Smelters from 1883-1900

Superfund Law

Remediation

 Cleanup of hazardous substances to protective levels

Human Health

And Environment

Restoration

 Picks up where remediation leaves off

- Return to baseline condition or replace lost services
- Natural resources State is trustee for gw/aq/terr
- Deepwater & Exxon-\$8B & 1B; CF=\$220m

Stucky Ridge State owned section

First thing...build a road and divide into three areas to spread the risk

Basin wildrye and sheep fescue dominate ARCO revegetation

Typical Pretreatment Area

120 Years of Severe Erosion

Large Rocks in Drainages

LOWLAND CREEK VOLCANICS

PARALITHIC RHYOLITE TUFF

14 INCHES (35 CM) ANNUAL PRECIPITATION

ELEVATION 5,400 feet (1,660 meters)

Soil Textures SL – SCL

SUBAREA 3 PREREMEDIATION SOILSUpper Half Foot2nd Half Foot

OM2.3%pH4.4pH4.9As185 ppmCd2.8 ppmCu1,480 ppm

not sampled 4.9 5.3 76 ppm 2.7 ppm 990 ppm

Upper Half Foot

Pb 65 ppm 250 ppm Zn 5 ppm NO3-NH4+ 3 ppm Olson P 20 ppm AmAc K440 ppm Buffer pH 5.8

30 ppm 220 ppm 2.5 ppm 1.2 ppm 10 ppm 290 ppm 5.9

2nd Half Foot

HOW MUCH LIME TO NEUTRALIZE?

SIKORA OR SMP

MEANINGLESS UNLESS YOU SPECIFY DESIRED pH 6, 6.5, 7 Added 1 t/a for elemental S

BUT WE USED SUGAR LIME

CORRECT SUGAR LIME TO EQUIVALENT PURE FINE AGRICULTURAL LIME

PURITY, FINENESS, MOISTURE SUBTRACT SOME ROCKS IN SOIL (e.g., SA 1 1/3 rocks by volume)

Sugar Lime Example SA 3

Moisture X CaCO₃ Eq. X Fineness 1.25 X 1.28 X 1.00

1.6 tons sugar lime for each ton of pure, fine, agricultural lime from Sikora or SMP

FINENESS = 99+%

 Upper Half Foot
 2nd Half Foot

 Lime Rate
 ------Means-----

 to pH 6.5
 8.1 t/a
 6.1 t/a

 Range
 0-13.5 t/a
 0-12.5 t/a

That's pure, fine agricultural lime

APPLY HOW MUCH?
STRATIFY BY LIME RATE

2 SAMPLES IN LOW CLASS

16 SAMPLES MEDIUM RATE

9 SAMPLES HEAVY LIME RATE

MEDIUM LIME RATE

Mean = 13.3 t/a SD = 1.4 t/a CV = 10% At 13.5 tons of lime/acre, only half the area would be adequately limed.

MEAN LIMES JUST HALF

APPLY THE Z STATISTIC

AREA UNDER THE NORMAL CURVE

SUBAREA 3 RATES OF SUGAR LIME TO ADEQUATELY NEUTRALIZE X% OF AREA

 % OF AREA
 BULK LIME RATE T/A

 95
 18.7

 97
 19.7

 98
 20.0

 99
 20.4

 Almost All
 22.3

CONFIRMATION SAMLING POSTREMEDIATION ACIDITY

22 SAMPLES IN 2013MEAN pH 7.22 samples had pH 6 or lessOne adjacent to a lime pile!

MEAN METALS AND OTHER SOIL PROPERTIES 0-6" PREREMED POSTREMED OM 2.3% 2.9% 185 ppm 200 ppm As 2.7 ppm 3.1 ppm Cd 1,390 ppm 1,480 ppm Cu 68 ppm 67 ppm Pb 375 ppm 250 ppm Zn

FERTILIZE BASED ON UPPER SIX INCHES. NO ROCK DISCOUNT

ADD: 45 POUNDS/ACRE ACTUAL N 30 POUNDS/ACRE ACTUAL P K NONE IN PLACES, 100 POUNDS/ ACRE POTASH IN OTHERS

PRE- AND POST-REMEDIATION SOIL FERTILITY 0-6"

PREREMEDPOSTREMED NO_3^- 5 ppm30 ppm NH_4^+ 3 ppm6 ppmOI P20 ppm60 ppmAm Ac K 440 ppm510 ppm

SUBAREAS 2-3

PERMANENT SEEDING FALL 2012 -- SPRING 2013
FALL 2013 ABOUT 40% OF SAs 2 AND 3 WERE ADEQUATELY STOCKED INITIALLY

INTERSEEDING REQUIRED

Kochia autosuppressed to provided 4% Relative Cover in 2016

Copperhead Slender Wheatgrass 29% relative cover in 2016 PHOTO 2014

Washoe Basin Wildrye 13% Relative Cover in 2016

2016

SILVER BOW CREEK REVEG PERFORMANCE STANDARD UPLANDS: 60% PERENNIAL CANOPY COVERAGE

DON'T COUNTY NOXIOUS WEEDS

STUCKY MEAN IN 2016 = 63.8 +- 5.8% CANOPY COVERAGE

11 OF 16 TRANSECTS PASSED THE STANDARD

We seeded a diverse mix of growth forms: 10 species of grasses 3 shrubs 9 forbs or "flowers" Few plants were able to handle the Cu concentrations.

3/4s OF RELATIVE PLANT COVER CAME FROM JUST THREE GRASSES

UPLIFTED TERTIARY FLUVIAL DEPOSITS SIT UNCONFORMABLY ON RENOVA-AGED MUDS. MATRIX ERODED AWAY LEAVING A LAG OF COBBLES.

