

Adding Value. Delivering Results.

Tailings Impoundment Stabilization Using Ground Improvement Technologies Ken Brouwer, Amy Adams, Craig Hall

Adding Value. Delivering Results.

Tailings Impoundment Stabilization Using Ground Improvement Technologies Ken Brouwer, Amy Adams, Craig Hall

July 3-7, 2017

Prague, Czech Republic

of International Commission on Large Dams

th Annual Meeting

New Afton Mine Site

- Previously operated as an open pit copper mine from 1978 to 1997
 - Starting in 2004 mine has been developed as an 11,000 tpd underground block cave mine

 Combination of historic and active facilities

Knight Piésold

New Afton Mine Site

- Previously operated as an open pit copper mine from 1978 to 1997
 - Starting in 2004 mine has been developed as an 11,000 tpd underground block cave mine

 Combination of historic and active facilities

Knight Piésold

5

Historic Afton TSF

West Dam

- 65 m high
- >100 m wide crest
- Constructed to EI. 706 m
- Planned Ultimate El. 732 m
- Downstream seepage collection and monitoring ponds

East Dam

- 65 m high
- 100 m wide crest
- Constructed to EI. 706 m
- Planned Ultimate El. 732 m
- Downstream Waste Rock dump higher than crest

WEST DAM

iésold

Historic Afton TSF – Dam Breach Analyses

- Dam breach analyses conducted to determine potential consequences of dam failure
- Breach runout could theoretically extend to Kamloops Lake if water and/or highly fluid tailings are present
- Extreme Consequences but Low Risk due to the robust embankments

Knight Piésold

Historic Afton TSF – Mudrush Risk for Underground Mine

- Block Cave mining method results in surface subsidence
- What could happen if mining induced bedrock cracking extended up into to the nearby Historic TSF?
- The 1970 Mufulira underground tailings breach in Zambia resulted in the deaths of 89 miners

Tailings Stabilization by Ground Improvement

Eliminate Potential for Mudrush

- Step 1 Remove surface water sources
 - Eliminate surface pond (evaporation)
 - Prevent surface water inflow (diversion ditch)
- Step 2 Stabilize the tailings solids
 - Impounded tailings consist of sandy beach deposits and finer grained silts and clay sized slimes tailings
 - Thus a wide range of tailings materials need to be assessed and stabilized.

Ground Improvement Technology - Dewatering

Coarse Sandy Tailings

- Dewater sandy tailings with pumping wells + wick drains
- Dewatered sandy tailings will have similar characteristics to filtered tailings
- Create unsaturated conditions to preclude liquefaction and/or flowability

Fine Tailings - Consolidation Loading

- Densify fine tailings with consolidation load (accelerated with wick drains)
- Increases yield stress for tailings with cohesion and plasticity
- Develop stable non-flowable soil deposit

Explosive Compaction

Tailings Densification

- Explosive charges installed and detonated at depth
- Causes sudden increase in pore water pressure as the tailings densify
- Install wick drains to allow pore water pressures to dissipate under self weight

Best Available Stabilization Technologies

Summary

- Sandy tailings Pumped dewatering that is enhanced with vertical wick drains
- Slimes Tailings Surcharge consolidation to densify (and dewater) the fine tailings.
 Wick drains required to enhance drainage. Install wick drains to allow pore water pressures to dissipate under self weight
- Interlayered tailings within transition zone stabilized by combination of both options
- Explosive densification excluded as base case stabilization option, but retained as contingency measure for surgical densification - if necessary

Site Investigation & Lab Rheology Testing

元

Tailings Characterization

Site Investigations and Depositional History

- Tailings site investigations characterized nature and distribution of sands and fine tailings (slimes)
- Coarser sandy fraction deposited closer to the point(s) of discharge along north side of facility

Sandy Tailings

MC = 37%

MC = 33%

MC = 30%

MC = 24%

- Pumpability (Flowability) decreases as moisture content reduces
- Sandy tailings are fluid (flowable) at higher moisture contents but become non-flowable as moisture content is reduced
- Partially saturated sandy tailings become stable soils

Tailings Slimes – MC vs Yield stress

MC = 48%

MC = 43%

- Yield stress (strength) increases as moisture content decreases during consolidation
- Flowability decreases as moisture content decreases

Laboratory testing

- Vane shear
 - Torque applied to vane, high rotation speed
 - Measures fluidized state
- Boger Slump

Knight Piésold

- Slump on removal of confining cylinder
- Change from static state
- Crack Simulation slurry flow
 - Slowly open a crack below tray;
 - Unpressurized
 - Static state

Boger Slump, Crack Simulation

w = 32%w = 38%w = 34%w = 47%w = 54%Ty = 200-700 Pa Ty = 1000 Pa Ty = 200PaTy = 150 PaTy = 30 Pa30 40 50 60 Not Flowable Transition Zone Potentially Flowable Paste to Soil Slurry to Paste Transition Zone (50 -Soil (>1000 Pa) Slurry (<50 Pa) Transition Zone 200 Pa) (200 - 1000 Pa)

20

Rheology Model – Vane Yield Test Results

Yield Stress vs. Moisture Content and Clav Fraction

Field Scale Trial Programs

Field Scale Trial Programs

Tailings Sands - Dewatering

Pumping Trial Program – Positive Results

- Dewatering wells yielded flows above expectations
- Wick drains were observed to accelerate the development of the drawdown cone and prevent perched water tables
- The sandy side of the tailings impoundment has since been designated as a make-up water source for the mine
- Water supply is a bonus additional pumping wells have since been installed to further exploit the 'tailings aquifer'

Tailings Slimes - Surcharge

Surcharge Consolidation

- Staged construction
- 10 m fill placed in stages over 2 months
- 2.2 m settlement after 3.5 months
- Piezometers monitor pore pressures in tailings foundations
- Fill loading rate coordinated with pore pressure dissipation rates to maintain pile stability during loading

Before/After Site Investigations

- Cone Penetration Testing (CPT)
 - Compare CPT tip resistance before and after consolidation
 - Adjusted for measured settlements to allow better comparison
- Auger Drilling and Shelby Tube Sample Collection
 - Mechanically actuated stationary piston sampler
 - No water used during drilling or sampling to preserve in-situ moisture
 - Lab testing to measure improved yield stress after consolidation

Tailings Slimes – Consolidation Results

Increase in tip resistance and yield stress

Summary

Effectiveness of Ground Improvement Technologies

Sandy Tailings:

- Pumping shown to effectively dewater the deep sandy tailings along the northern half of the tailings impoundment.
- Wick drains help to accelerate drawdown during pumping
- The sandy tailings will become non-flowable at low moisture contents and when partially saturated.
- Water supply a bonus trial pumping program has been expanded

Summary

Effectiveness of Ground Improvement Technologies Slimes Tailings:

- Surcharge consolidation is effective in increasing tailings yield stress.
- Wick drains accelerate consolidation process
- Consolidation results in densification and increase in yield stress
- Fine tailings transition from fluid to a more stable soild when consolidated.

Surcharge Trial confirmed that densification due to loading will reduce moisture content (increase in-situ dry density) and mitigate mudrush potential

