

Remediation of The Block-P Mine Barker Hughesville Mining District, Montana

Chris Neaville Roger Hoogerheide Randy Huffsmith

woodplc.com

Project Team

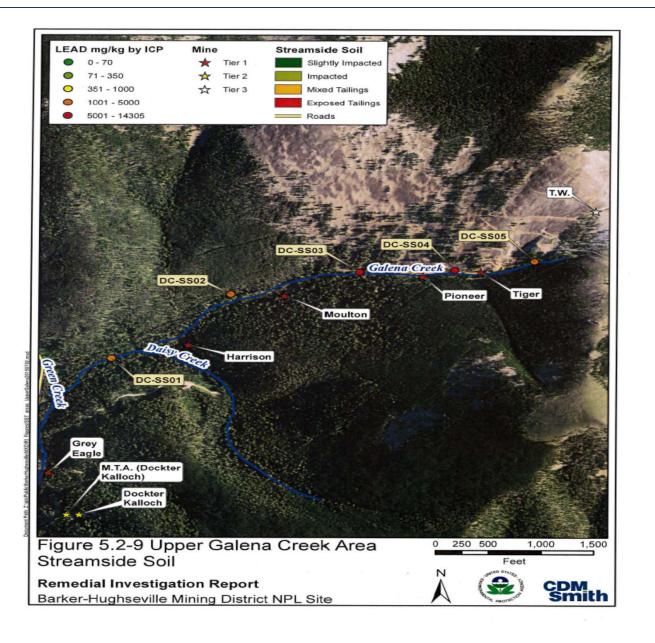
Block P Mine Site Before Source Removal Action

Block P Mill Removal Action 1998 to 2006

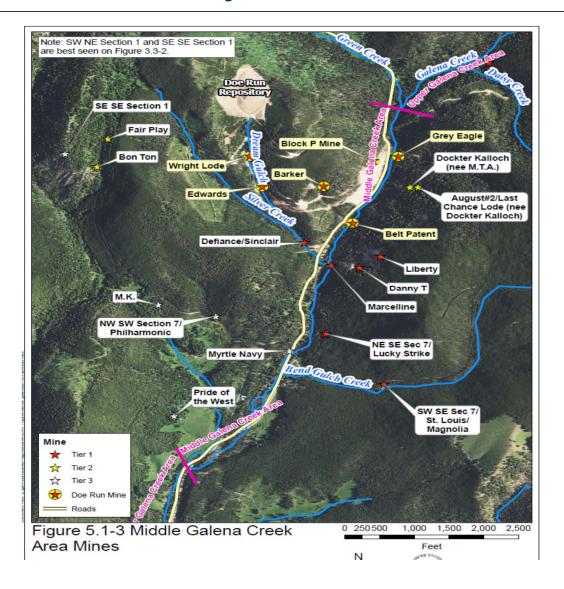
Block P Mill Removal Action 1998 to 2006

Approx 100,000 cys excavated from lower bench and Bender Creek and consolidated with 60,000 cys in the upper bench

• • •


Maps and Background Information

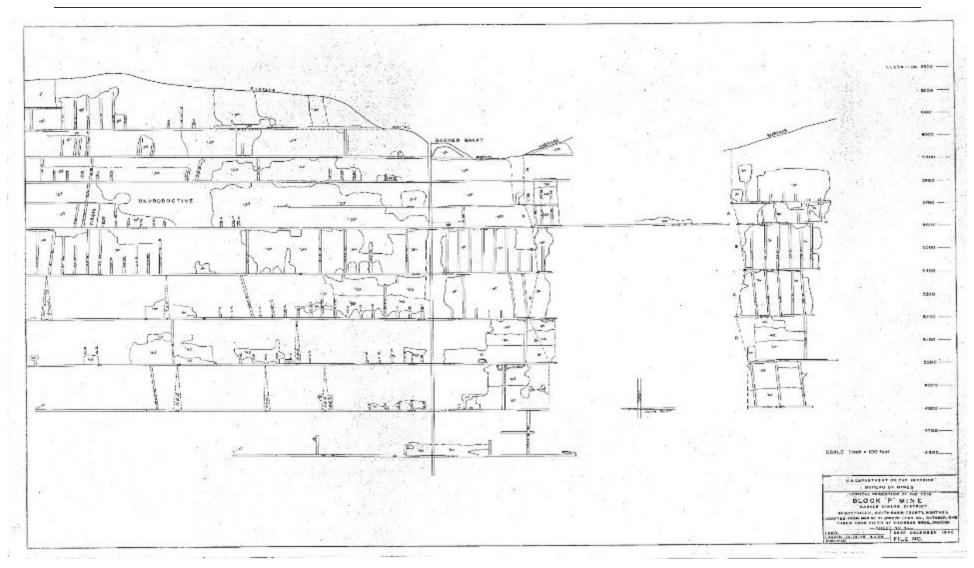
3-D Image of Barker Hughesville Mining District



Mines Up Stream (Galena Creek) from Block P Mine

. . . .

Mines Adjacent To Block P



Hughesville Granitic Stock

....

Block P Mine Map (Along Strike)

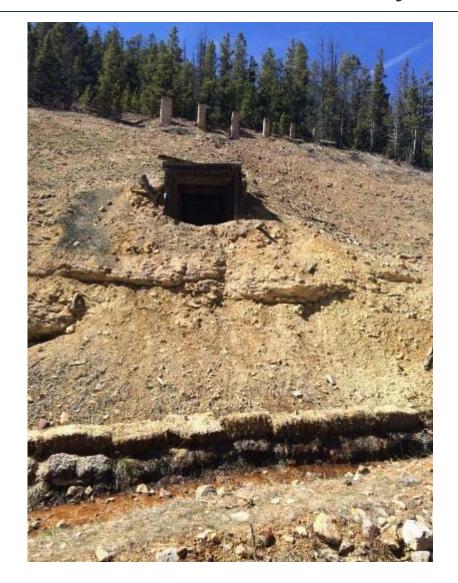
• • •

Plan View Mine Map

....

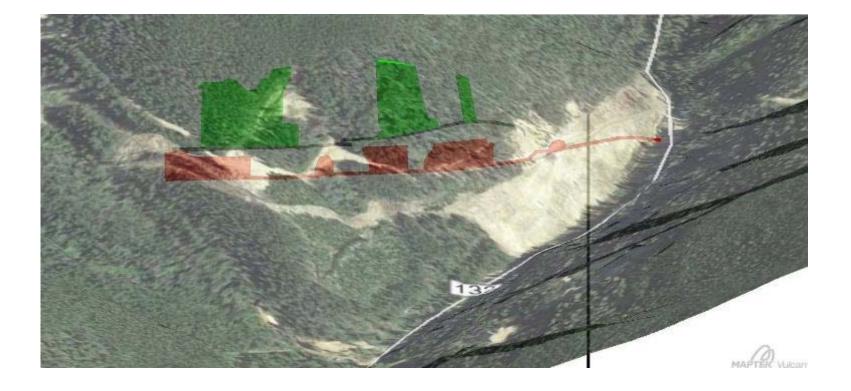
Vulcan Image Block P Workings

• Tilted Plan view

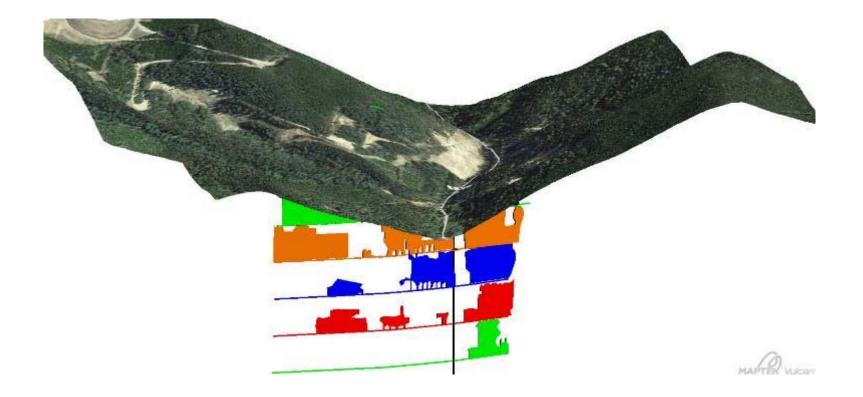

Vulcan Image Block P Workings

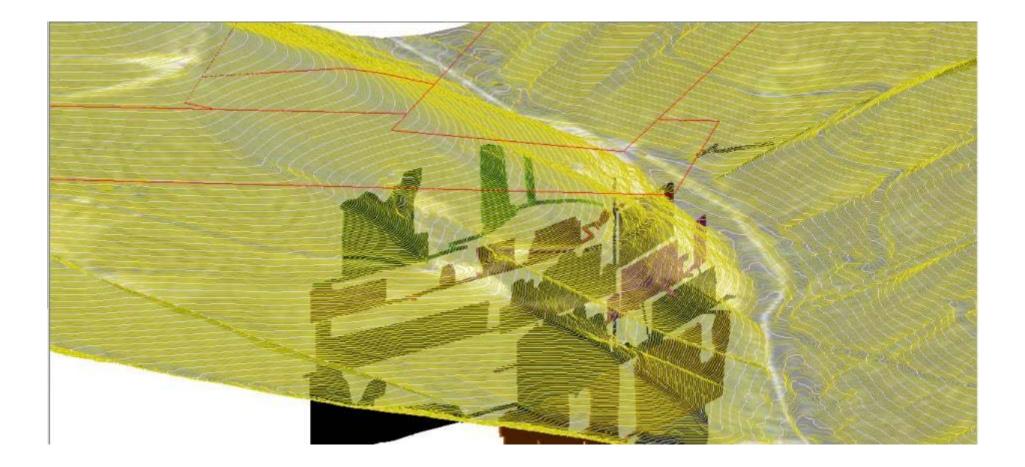
• Planview of Underground Workings

75 Level Adit – View in Early 2017


Grey Eagle Adit

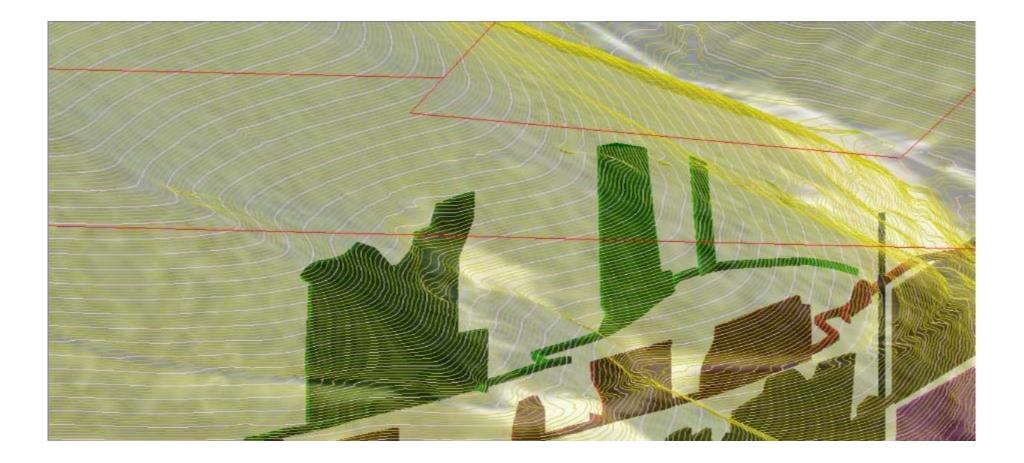
Vulcan Image Block P Workings


• 80' and 75' Levels with the Barker Shaft

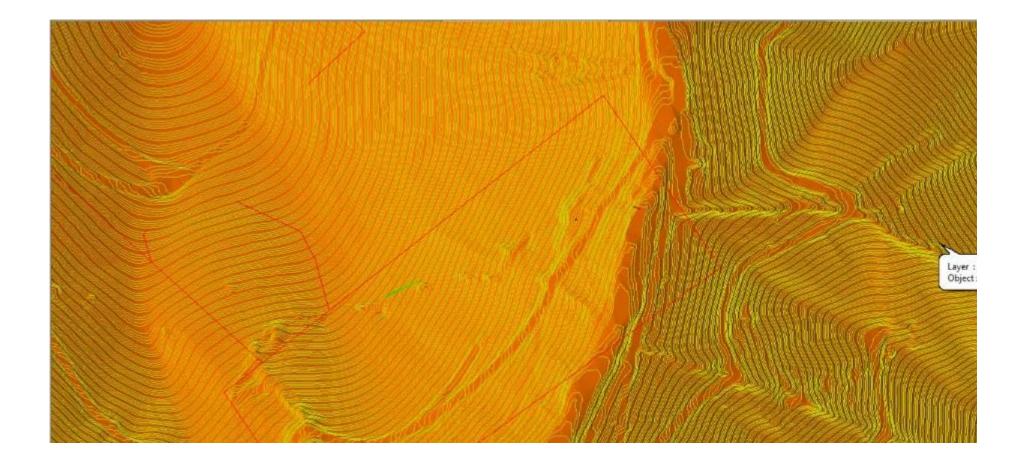

Vulcan Image Block P Workings

• Block P Stope Cross -Sections

Lidar, Claim Boundary's and Workings



Close-up Showing the Surface Expression of Adits



Stopes that are Close to the Ground Surface

Lidar Helps Reveal the Subsidence Area's

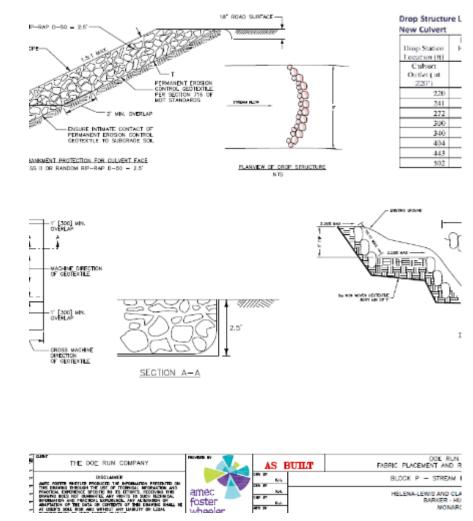
Pre-Remediation Block P Mine

Grey Eagle Adit - Discharge

Block P Seep #1 – 25 gpm Pre- Remediation

Block P Seep #2 was 25 to 50 GPM Pre -Remediation

Site in Early 2017 Prior to Fill



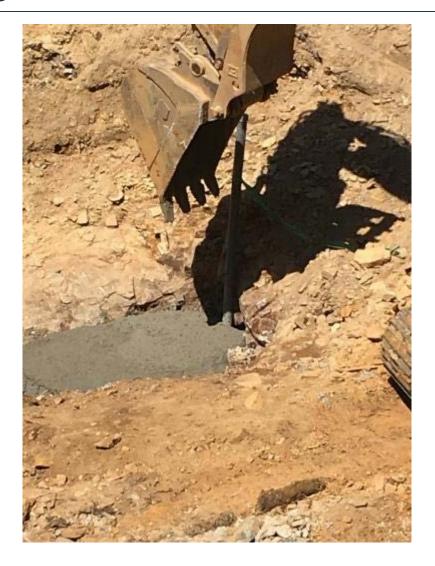
2017 Interim Action

Block P Remedial Objectives

- Be Safe
- Plug/Reduce the flow Rate of Acid Water into Galena Creek, fill mine voids with Water
- Reduce the amount of Heavy Metals into Galena Creek
- Build a Stable Stream Channel
- Reclaim Areas that Didn't Take during 2011 Removal Action

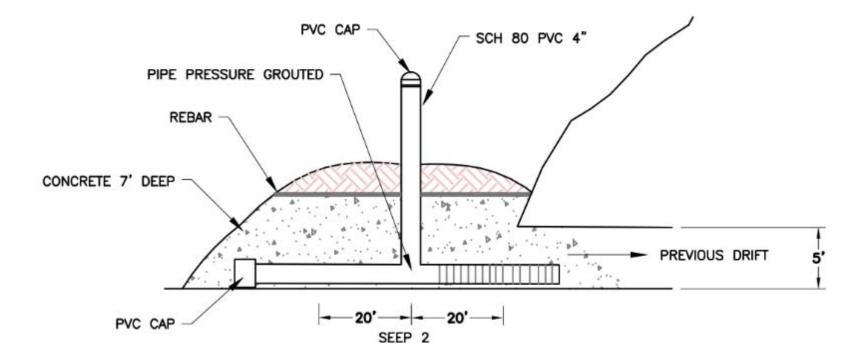
During Plugging, we found that Seep #2 – was a Drift

We Removed all Loose Material and Filled it with Acid Resistant Grout



Preparation for Filling Seep #2

Filling the Drift with Grout and Rebar



Avanti Grout Placed in Bedrock Fractures at Seeps

SEEP 3 AVANTI GROUT

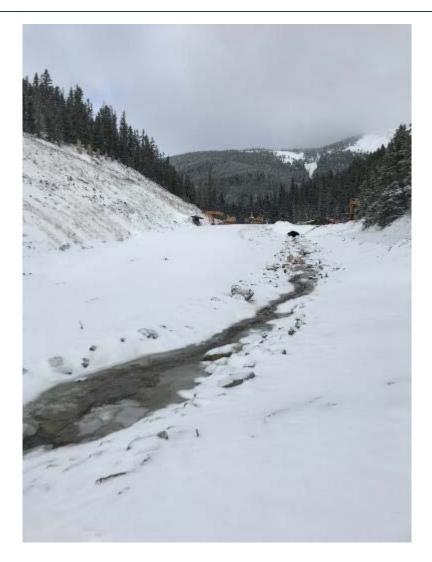
We Backfilled the Seep Areas with Low Perm Material after Grouting

We had to Move the Stream to Protect the Low-Perm Fill from Scour and add a Culvert to Allow us to Deepen the Fill

Culvert Installation

Birds – Eye View of Fill Operations

Adit Gate Installation



South End Slope Stabilization

Snowed Out October 2017 – Nearly Done

© Amec Foster Wheeler 2017

Seeps Flow and Quality Before and After Remediation

						2017/Histo Block P Mine		TABLE 4 and Seeps , Barker-Hu		-	•							
Sampling		Sampling	•	Key Field Parameters					Total Recoverable Metals (µg/L)									
Station	Location	Date	Comments	Discharge (gpm)	рН	SC (mmhos/cm)	DO (mg/L)	Temp (℃)	AI	As	Cd	Cu	Fe	Pb	Mn	Ni	Zn	
GE-1	Grey Eagle Adit	6/14/2017	Sampled at notched w eir	11.7	3.76	0.309	11.99	7.01	1800	53	57	62	5400	130	6300	4.2J	10000	
BP-1	75' Level Adit	6/14/2017	Sampled follow ing storm event	2	2.79	0.86	12.85	5.77	1000	83	54	900	28000	370	8000	17	9000	
Adit-BB-1	"	5/1/2012	Spring Flow	ND	ND	ND	ND	ND	5260	309	24.1	104	113000	83.7	51400	44.8	23000	
SEEPS-ALL	Combined Seeps	10/18/2017	Remaining consolidated seep flow	2.23	5.7	0.8	6.4	8.12	440J	2.8	52	20	9200	1.2	28000	24	15000	
SBP-1	Upper Seep	6/14/2017	Seeps plugged and backfilled during	12.53	3.18	1.547	2.01	7.54	8500	140	59	170	130000	100	58000	60	27000	
SBP-2	Middle Seep	6/14/2017	summer 2017 stream reconstruction	≈10	3.23	1.32	2.96	6.93	6700	120	66	400	110000	110	51000	46	25000	
SBP-3	Low er Seep	6/14/2017		0.5 – 1.0	3	1.272	7.78	19	22000	31	140	2000	12000	97	21000	37	24000	
GC-32⁴		9/9/2014	Single seep evident	ND					6680	53.6	68.2	437	106000	82.5	52300	32.9	27100	
GC-32"	Single Seep	6/17/2014	follow ing mine w aste	ND					5870	49.9	76.6	479	108000	86	51500	38.3	27100	
SW-BB-2		5/8/2013	removal	82	3.43	2.046	1.31	7.5	7350	60.6	163	3810	135000	224	58200	37.8	36100	
SBPM-1	Block P Mill Repository	6/14/2017	Low flow , <1 gpm	<1	4.43				11000	6.3	44	370	17000	ND	92000	62	15000	
Montana Dep	Nontana Department of Environmental Circular DEQ-7 (April 2017),					idard for Surface	e Water		NA	10	5	1300	NA	15	NA	100	2000	
Quality (DEQ)) Circular DEG		Circular DEG	Q-7 (April 2017	7), Aquatic	Life Standards,	stated as Ac	ute	750	340	0.49	3.79	NA	13.98	NA	145	37	
2017)			Circular DEQ	-7 (April 2017)), Aquatic L	.ife Standards, s	tated as Chro	onic	87	150	0.252	2.852	1000	5.452	NA	16.12	37.2	

NA - Not Applicable

Qualifiers: J indicates that the result is less than the Reporting Limit (RL) but greater than or equal to the Method Detection Limit (MDL) and the concentration is an approximate value.

NM - Not Measured

ND - No Data

Notes:

1 Analyzed for Total Recoverable Metals in accordance with EPA Method 6020A, and reported in micrograms per liter (μ g/L).

2 Chronic Aquatic Life Standards hardness dependent (25 mg/L).

3 Flow estimated at 22 gpm on 06/29/17.

4 Monitored by EPA ESAT Team

Up and Down Stream Pre- and Post Remediation Water Quality

								TABLE 3									
						2017/	Historic Surfa	ice Water Mo	nitoring Sumr	nary							
						Block P M	ine Complex,	Barker-Hugh	esville Minin	g District							
Sampling	Location	Sampling Date	Comments	Key Field Parameters					Total Recoverable Metals (μg/L) ¹								
Station				Flow cfs	pH S.U.	SC µmhos/cm	DO mg/l	°C	AI	As	Cd	Cu	Fe	РЬ	Mn	Ni	
		10/18/17	Immed. above temp. diversion dam		5.9	254	12.98	5.22	ND	0.84J	0.37J	4.2	0.86	77	1.1J	1.1	
Station GC-35 (GC-SS-1) GC-30 (GC-SS-2)		06/14/17		0.85	7.34	198	13.66	5.5	1400	2.8J	1.1J	56	3000	130	290	2.2J	
		10/10/16			6.57		11.85	4.15	412	1.54	1.04	31.6	1820	82.3	246	1.55	
	Galena	06/06/16			6.75	264	14.61	3.05	176	0.79	1.1	55.6	960	32.2	325	1.1 2.2J	
GC-35 (GC-SS-1)	Creek Upper End Block P	09/30/15	In made above		7.67	300	12.85	3.6	58.3	1.3	0.39	7.9	343	21.9	138	1.7	
	0	06/02/15	upper Culvert		7.08	187	12.77	5.35	165	0.8	0.94	38.9	1150	35.2	293	1.64 1.7 1.4 1.7 1.1 0.95 2.1 3.7J	
		09/11/14			7.75	227	9.93	3.97	109	0.8	0.81	30.8	609	15	244	1.7	
		05/12/14				6.77	156	11.49	3.53	186	1.1	0.24	9.4	428	4.4	51.3	1.1
		09/10/13			7.4	297	14.69	7.66	29.9	0.98	0.37	3.6	116	1.4	82.3	0.95	
		05/08/13			6.59	171	10.48	4.1	997	3.7	0.53	23.2	2210	65.7	180	2.1	
		10/18/17			5.49	309	15	5.83	310	2.4J	7.1	12	1000	11	2500F1	3.7J	1
		06/14/17 2.66 6.35 287 12.41 8.04 1500 8.1 4.4 53		ND	0.86	77											
		10/10/16			6.73	225	11.79	4.82									
Station GC-35 (GC-SS-1) (GC-30 (GC-SS-2) (Galena	06/06/16			6.8	339	9.78	5.3				64.6					
GC-30 (GC-SS-2)	Creek Lower	09/30/15			6.99	388	13.42	2.56									
	End Block P	06/02/15	ioner oanen		6.83	270	12.46	6.5		-							
		09/11/14			NM		9.97										
		05/12/14			5.48	352	11.82	3.35								-	
		09/10/13			6.5	377	11.71	6.47									
		05/08/13			6.34	375	10.37	3.3	1180	22.8	12.5	124	10900	46.5	4860	5.4	
Montana Departme	ent of Environm	nental Quality Circ	Immed.above upper Culvert 6.57 133 11.85 4.15 412 1.54 1.04 31.6 1820 82.3 246 1.55 1 Immed.above upper Culvert 6.57 284 14.61 3.05 176 0.79 1.1 65.6 960 82.2 32.5 1.64 1.7 Immed.above upper Culvert 7.67 300 12.85 3.6 68.3 1.3 0.39 7.9 343 21.9 138 1.7 1.4 7.75 227 9.93 3.97 109 0.8 0.81 30.8 600 15 244 1.7 1.6 6.77 15.6 11.4 9.4 428 4.4 51.3 1.1 1.4 82.3 0.95 1.5 1.6 1.4 9.7 3.6 118 1.4 8.3 0.95 1.5 1.5 1.1 0.24 9.4 423 4.4 51.3 1.1 1.2 1000 11 2.50 1.5														
mentana peparune		(17) ²	and a carr (reprin														
					Aquatio	Life Standard -	87	150	0.25	2.85	1000	0.545	NA	16.1			

Footnotes:

1 Analyzed for Total Recoverable Metals in accordance with EPA Methods 6020A and 6020C, and reported in micrograms per liter (µg/L)...

2 Circular DEQ-7 standards for metals in surface water are based on total recoverable metals concentrations in accordance with digestion procedure - EPA Method 200.2.

Chronic Aquatic Life Standards hardness dependent (25 mg/L). Flow measured on 6/29/17 (due to equipment failure on 06/14/17).

Flow estimated at 22 gpm on 06/29/17.

Fill Before and After Remediation

Next Steps for 2018 and Beyond

Identify any "Grass Roots Mining" and Reclaim

- Combine Vulcan Models and Lidar to Identify Physical and Hydraulic Risk Areas
- Field Verify Risk Areas
- Generate a work Plan for Remediation
- Generate a Design for Risk Areas
- Complete Subsidence Risk Reduction and Hydraulic Risk reduction in 2018

Mineralized Naturally Occurring Material Re-Evaluating Background in 2018

Cilent Sample Re	รงแร
------------------	------

Client: AMEC Foster Wheeler E & I, Inc TestAmerica Job ID: 580-72 Project/Site: Barker Hughesville Project Client Sample ID: BS-NSC-01 Lab Sample ID: 580-724 Date Collected: 10/12/17 14:00 Matrix: Date Received: 10/27/17 09:40 Percent Solids										
Method: 6020A - Metals (IC Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	28	· · · ·	0.36	0.071	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Cadmium	2.4		0.29		mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Copper	96		0.71	0.16	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Iron	25000		29	8.2	mg/Kg	¢.	10/30/17 11:34	10/31/17 15:41	10	
Lead	730		0.36	0.034	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Manganese	22000		1.4	0.32	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Nickel	9.9		0.36	0.14	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Zinc	420		3.6	1.2	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
Aluminum	12000		21	4.7	mg/Kg	¢	10/30/17 11:34	10/31/17 15:41	10	
General Chemistry										
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Solids	79.3		0.1	0.1	%			10/29/17 14:35	1	
Percent Moisture	20.7		0.1	0.1	%			10/29/17 14:35	1	

• Native (Undisturbed) soil

Design a Bulkhead for 75 Adit, Complete Abbreviated Consultation with EPA/DEQ for Ponding Mine Water

Support DEQ and EPA in an Upper Reach Galena Creek to Lower Reach Remediation Program for Other Mines

Figure 3-7. Select photographs of Upper Galena Creek below Moulton Mine from game camera, during and after large precipitation events

Questions?

A presentation by Wood

woodplc.com